Astrophysical Journal 742 (2011) 127
Abstract
We report on the VERITAS discovery of very-high-energy (VHE) gamma ray emission above 200 GeV from the high-frequency-peaked BL Lac object RXJ0648.7+1516 (GBJ0648+1516), associated with 1FGL J0648.8+1516. The photon spectrum above 200 GeV is fit by a power law dN/dE = F0(E/E0)−Γ with a photon index Γ of 4.4 ± 0.8 stat ± 0.3 syst and a flux normalization F0 of (2.3±0.5 stat ±1.2 sys)×10−11 TeV−1cm−2s−1 with E0 = 300 GeV. No VHE variability is detected during VERITAS observations of RXJ0648.7+1516 between 2010 March 4 and April 15. Following the VHE discovery, the optical identification and spectroscopic redshift were obtained using the Shane 3–m Telescope at the Lick Observatory, showing the unidentified object to be a BL Lac type with a redshift of z = 0.179. Broadband multiwavelength observations contemporaneous with the VERITAS exposure period can be used to sub-classify the blazar as a high-frequency-peaked BL Lac (HBL) object, including data from the MDM observatory, Swift -UVOT and XRT, and continuous monitoring at photon energies above 1 GeV from the Fermi -LAT high-energy gamma-ray satellite. We find that in the absence of undetected, high-energy rapid variability, the one-zone synchrotron self-Compton model (SSC) overproduces the high-energy gamma-ray emission measured by the Fermi -LAT over 2.3 years. The SED can be parameterized satisfactorily with an external-Compton or lepto-hadronic model, which have two and six additional free parameters, respectively, compared to the one-zone SSC model.