Astronomers using the VERITAS telescopes to detect some of the highest-energy photons in the Universe need your help! These photons are gamma-rays that originate in astrophysical environments like the expanding blast waves thrown out by supernova explosions, or from powerful streams of material that flow from the cores of active galaxies at speeds close to that of light. Muons (a particle like an electron, only heavier) are a prominent background contaminant when observing very-high-energy gamma rays on earth. They leave a distinctive ring-like shape making them obvious to the human eye, but incomplete or truncated rings can appear very gamma-ray-like to automatic analysis algorithms. We need your help to identify camera images that contain muon rings so we can teach computers to better identify such images and efficiently filter out those pesky muons that are masquerading as gamma rays.

Find out more at Muon Hunters
VERITAS Video

Videos on youtube can be found here.

Media

Here are copies of the new (2011) signs posted outside the FLWO Visitors Center close to the T1 telescope (click on the figures for full-size versions):
Observing Gamma Rays

Miles overhead, very-high-energy gamma rays enter the atmosphere and collide with all molecules. These collisions produce a shower of secondary particles that move towards the ground at nearly the speed of light. The VERITAS gamma-ray image shows black/whitish glow, generated by these "air showers". This produces Cherenkov light last only a few nanoseconds or a second.

Each telescope views the air shower from a different perspective, and the resulting images have different orientations. The position is the sky of a gamma-ray source can be determined from the intersection of lines drawn through each image.

The complete spectrum of visible and invisible light extends far out on both sides of visible light from radio waves to gamma rays. VERITAS studies invisible very-high-energy gamma rays with billions of times more energy than visible light.

Gamma-ray astronomy has opened a new window on the universe. Thanks to gamma-ray telescopes, such as VERITAS, we now study the very-high-energy invisible light produced in the most extreme environments in the Universe, from black holes, supernovae, and starburst galaxies.

The Crab Nebula is a supernova remnant powered by a magnetar, a highly energetic neutron star. The supernova remnant generates gamma rays, and the Crab Nebula is a source of gamma rays on both sides, using VERITAS instruments.

Young stars release light, massive black holes, and magnetars. These objects produce intense outbursts of radiation, including gamma rays. The energy between these stars and the surrounding gamma-ray products varies.

Starburst galaxies, the SSQ, born early in the universe, last only a few billion years. Their rapid evolution makes these young systems valuable in understanding gamma-ray sources and starburst galaxies, such as the Crab Nebula. This makes VERITAS an important tool for studying gamma-ray sources and starburst galaxies.
Outreach & Education
Last Updated Tuesday, 04 December 2018 20:41

If you have any questions on astronomy or astrophysics in general please follow one of these links

- NASA - Ask an astrophysicist
- Ask an astrophysicist - specialising in cosmic-ray, gamma-ray and X-ray astrophysics
- Ask an astronomer
- McDonald's Observatory ask an astronomer
- Curious about astronomy ask an astronomer
- Cool cosmos ask an astronomer
- Ask an astronomer @ UCBerkely
- Lick Observatory ask an astronomer
- NRAO ask an astronomer
- Harvard CfA resources for amateur astronomers
- Phil Plait's Bad Astronomy page