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Abstract

In astronomy, many of the observed sources show a transient behavior. Examples are
gamma-ray bursts (GRBs) and active galactic nuclei (AGN). For those source types
the variability can be very short, in the order of seconds to minutes. Measuring
the flux variations is necessary to understand the underlying physical processes
responsible for the emission. However, the detection of very short flares can be
di�cult in the very high-energy range, in which imaging atmospheric Cherenkov
telescopes like VERITAS are operating. This is due to the large background and
the comparable low signal rates.
This thesis discusses the implementation of advanced statistical methods (exp-test
and Bayesian-Blocks) into the VERITAS analysis framework, that are optimized for
the detection of significant variations in the event rate. The performance of these
methods is evaluated and compared by using Monte Carlo simulations of minute-
scale flares for two di↵erent VERITAS states, pre- and post-hardware-upgrade. It
is shown that the advanced methods can improve the detection sensitivity for short
flares with high fluxes of more than the Crab flux (Crab unit = C.U.). For example,
flares at 2 C.U. with short durations down to 100 sec are now detectable, which is
not possible with the standard method.
In the next step of this thesis, 6 GRB afterglows and 450 runs of AGN data, observed
by VERITAS, are analyzed with the advanced methods. In none of the AGN runs
a significant detection of short time variability is made, which is in consistence with
the canonical AGN models. The investigation of the 6 GRB afterglows also did
not reveal any short flares in the GeV-TeV range. However, for two of them it was
possible to estimate an upper flux limit of 1.25 C.U. (⇡ 3, 7 · 10�10 erg cm�1s�1

[0,1;10 TeV]).
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Kurzfassung

In der Astronomie zeigen viele Quellen ein veränderliches Verhalten. Beispiele dafür
sind Gammablitze (GB) und aktive Galaxienkerne (AGK). Der zeitliche Rahmen,
in dem bei diesen Quellen beobachtbare Veränderungen stattfinden, kann sehr kurz
sein und im Bereich von Sekunden bis Minuten liegen. Um die zugrundeliegen-
den und für die Photonenemission verantwortlichen, physikalischen Prozesse besser
zu verstehen, ist eine Messung der Flussänderungen notwendig. Allerdings kann
die Entdeckung sehr kurzzeitiger Ausbrüche im sehr hochenergetischen Bereich des
Spektrums, für welche abbildende atmosphärische Cherenkov Teleskope, wie z.B.
VERITAS, zum Einsatz kommen, schwierig sein. Die Ursache dafür ist der hohe
Untergrund und die vergleichsweise niedrige Signalrate.
Diese Dissertation behandelt die Implementierung fortschrittlicher und für die Ent-
deckung signifikanter Ratenänderung optimierter, statistischer Methoden (exp-test
and Bayesian-Blocks) innerhalb des VERITAS-Analyse-Programms. Das Verhal-
ten dieser Methoden wird anhand von Daten minutenlanger Ausbrüche, die mittels
Monte-Carlo-Technik für zwei unterschiedliche VERITAS Stadien simuliert wurden
(vor und nach der Hardware-Aufrüstung), bewertet und miteinander verglichen. Es
zeigt sich, dass die fortschrittlichen Methoden die Empfindlichkeit bei der Entdeck-
ung von kurzzeitigen Ausbrüchen verbessern, wenn deren Fluss den des Krebsnebels
übersteigt (Krebsnebel-Einheit = K.E.). Beispielsweise sind nun Ausbrüche von 2
K.E. selbst dann nachweisbar, wenn deren Dauer nur 100 Sek. beträgt. Dies ist mit
der Standardmethode nicht möglich.
Im darau↵olgenden Schritt dieser Doktorarbeit werden das Nachglühen von 6 GB
sowie die 450, ebenfalls mit VERITAS erzeugten, Aufnahmen von AGK-Quellen
mittels der fortschrittlichen Methoden analysiert. In keiner der AGK-Aufnahmen
wird eine signifikante Entdeckung kurzzeitiger Variabilität gemacht, was mit den an-
erkannten AGK-Modellen übereinstimmt. Auch die Untersuchung des Nachglühens
der 6 GB o↵enbart keine kurzen Ausbrüche im GeV-TeV Bereich. Jedoch is es für
2 von ihnen möglich, ein oberes Flusslimit von 1.25 K.E. (⇡ 3, 7 · 10�10 erg cm�1s�1

[0,1;10 TeV]) abzuschätzen.
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Chapter 1

Introduction

Gamma-rays are the most energetic known forms of electromagnetic radiation, span-
ning at least 8 decades of energy from 106 eV to greater than 1014 eV. They are
produced by non-thermal processes in the most extreme conditions and environ-
ments of the universe. Similar to optical photons, but hundred thousand times
more energetic, the gamma-ray photons propagate through space without changing
their direction and without loosing much of their energy. This is because they are
not a↵ected by the interstellar and intergalactic magnetic fields like the cosmic ray
particles (protons and electrons). Therefore, gamma rays are perfect candidates to
gain insights into particle acceleration processes and to provide the exact origin of
those.

In general the emission spectrum of this non-thermal processes is decreasing in the
energy range of gamma-rays. While the flux from X-ray up to MeV/GeV energies
is still large enough to provide a su�cient amount of direct detections in a space-
based experiment, it was necessary to develop other experiments with much larger
collection areas to measure the low rates of photons with energies above 50 GeV. As
the deployment of such a large construction in space is too expensive, only ground-
based experiments come into question. These kind of experiments make use of the
fact that energetic gamma-ray photons decay into electron-positron pairs and induce
showers of relativistic particles when they propagate through the earth atmosphere.
The direction and energy of the primary gamma-ray photon can only be measured
indirectly.
There are two types of ground-based experiments: one is based on the detection
of the shower particles itself, while the other detects the Cherenkov light emitted
within the air shower. The advantage of the particle detectors is the large field of
view (⇠ 1 sr) and a duty cycle of nearly 100%. The challenge is the distinction be-
tween gamma-rays and the much more frequent comic-rays, that initiate air showers
as well. There is a di↵erence in the development of both kind of showers, which is
di�cult to discover just by measuring the shower particles that hit the detector on
the ground. This is why a new type of observation technique had been developed,
that uses the Cherenkov light emitted by each particle of the shower.
With one or more telescopes, the Cherenkov light of a shower is focussed onto fast
recording, pixelized cameras which results in digitized images of the shower. These
images are used to reconstruct the energy and direction of the primary particle and
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to distinguish between a gamma ray and cosmic ray. Instruments that use this
technique are called Imaging Atmospheric Cherenkov Telescopes (IACTs). Cur-
rently there exist four IACT instruments on the globe: H.E.S.S, MAGIC, FACT
and VERITAS. These instruments have a typical field of view of 3 - 5� and a duty
cycle of about 10% (⇠ 1000 hours/year).

Fig. 1.1: Locations of all the detected TeV emitters, given in galactic coordinates. The
color of each point represents the di↵erent source class as explained in the legend. Image
credit: Wakely and Horan (2015).

With those instruments, altogether more than 170 VHE gamma-ray emitters [Wakely
et al. (2016)] had been discovered (see Fig. 1.1). The VHE sources found within
our galaxy are supernova remnants, pulsar wind nebulae (PWN), X-ray binaries
and other unidentified objects. Outside of our galaxy, the known TeV gamma-ray
emitters are starburst galaxies and various types of active galactic nuclei (AGN).
In addition to those objects, other source classes are thought to be possible VHE
emitters, including galaxy clusters, microquasars, gamma-ray bursts (GRBs) and
possible signatures from dark matter.

A very important part during the study of these sources is the determination of
their temporal behavior. Knowing the duration of an enhanced emission in a spe-
cific energy range helps to adjust the parameters of existing theoretical models that
describe the source or rule out particular models if there are more than one. Es-
pecially if the occurrence of a flux change in one energy band correlates with the
occurrence in an other band. However, measuring the temporal flux variations in the
VHE range with an IACT can be challenging if the duration of the enhanced flux is
very short (100�102 sec). This is because an observation usually has to take at least
several thousands of seconds to get enough signal data that significantly exceed the
background. Therefore, the detection of very short VHE emission periods can only
be improved either by increasing the instruments sensitivity or by applying di↵erent
statistical methods during the data analysis.
Typical source types with very short emission durations are GRBs. Those objects
are the most extreme explosive events in the Universe with a total isotropic equiv-
alent energy output of 1052 � 1054 ergs. They emit short, bright flashes of photonic
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radiation with peak energies in the gamma-ray band between ⇠ 100 keV and ⇠ 1
MeV. This prompt emission can last from milliseconds to several hours and is usu-
ally followed by a longer-lived ”afterglow” emitted at longer wavelengths (X-ray to
radio). Unfortunately, GRBs have yet to be detected in energy range greater than
100GeV and only flux upper limits have been reported.
Also microquasars are supposed to show some fast variability from the radio to the
X-ray band. A microquasar is a X-ray binary formed by a normal star and a com-
pact object which can be a stellar black hole or a neutron star with few solar masses.
It accretes mass from the normal star under the formation of an x-ray emitting ac-
cretion disk and relativistic radio jets. It is also expected that VHE photons are
produced inside these jets. This radiation should be temporally connected to the
emission at lower energies. If VHE emission exists and varies on very short time
scales has to be verified.
In general, the physical processes happening at a microquasar are the same ones
that occur inside quasars (or AGN) but on much smaller spatial scales. Because
the mass of a blackhole at the center of the AGN is supermassive (millions of so-
lar masses) also the measured duration of any physical change inside an AGN is
much longer compared to the one in a microquasar. However, AGN are much more
energetic than microquasars and many of them have already been detected in the
VHE range. These sources mainly belong to the AGN subgroup of Blazars. There
exist also some AGN with VHE flux variations down to several minutes. Detecting
and studying this short time variability is necessary for fine tuning the parameters
of existing canonical AGN models or it leads to the verification or the rejection of
specific model extensions.

The focus of this thesis is the test of di↵erent statistical methods, inside the VERI-
TAS analysis procedure, with the goal to improve the detection of very short (⇠ few
minutes) VHE flux variations. The standard procedure is the accumulation of all
gamma-like events measured during an observation and use this number together
with an expected number of background events to calculate the significance of a
detection. An enhanced emission only during a small period of the observation will
then be averaged over the whole data taking duration and probably won’t get de-
tected. However, there exist some advanced statistical methods, developed by J.
Prahl [Prahl (1999)] and J. D. Scargle [Scargle (1998), Scargle et al. (2013)], which
take into account the additional temporal information of each event to determine if
the measured rate changes significantly during an observation.
This thesis here describes the implementation of these methods into the VERITAS
analysis framework and compares their detection sensitivity with the one of the stan-
dard method on basis of Monte Carlo (MC) generated simulations of minute-scale
flares. In a further step, these methods are applied to VERITAS data of potential
VHE sources with short-time variability. This gives a hint about the general de-
tection rate of such variability in the VHE regime and constrains the duration and
amplitude of such flux variations.

The thesis is structured as follows. Chapter 2 starts with a brief introduction into the
physics of air showers and discusses the imaging atmospheric Cherenkov technique,
along with hardware and software information of the VERITAS array. It is followed
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by Chapter 3, which describes the very-high-energetic astrophysics and gives an
overview of the di↵erent types of transient gamma-ray sources. In Chapter 4 the
di↵erent statistical methods, used throughout this thesis to calculate the significance
of a data measurement, are derived in detail. The implementation of the advanced
methods into the VERITAS analysis framework is described in Chapter 5. In the
same chapter the performances of the advanced methods and the standard method
are compared by applying them to MC generated simulations of minute-scale flares.
The next step, presented in Chapter 6, was the usage of these methods to search for
short flux variations in VERITAS data of known transient gamma-ray sources. The
list of analyzed sources comprises 13 AGN, 6 GRBs and the Crab Pulsar. Further
the data, taken during a flaring period of the Blazar Markarian 421, was studied in
more detail within the same chapter. Finally, in Chapter 7 a brief summary of the
results is provided, followed by an overview of the improvements expected from a
future IACT like CTA (Cherenkov Telescope Array).

4



Chapter 2

Measurement of very
high-energetic gamma-rays

In this chapter we explain the detection of very high-energetic (VHE) gamma-rays
with Imaging Atmospheric Cherenkov Telescopes (IACT). Therefore it is necessary
to describe the characteristic e↵ects induced by such VHE photons entering the at-
mosphere before we explain the detection technique of an IACT. As we use data
measured by the Very Energetic Radiation Imaging Telescope Array System (VER-
ITAS) we will provide a detailed look into its hardware components and into the
standard analysis with this instrument.

2.1 Air showers

When a high-energy cosmic-ray particle interacts with the molecules of the atmo-
sphere it is able to initiate a cascade of particles. Some of these energetic secondary
particles of the cascade lose a part of their energy by emitting Cherenkov radiation.
By measuring this light with a dedicated telescope system, one is able to gain in-
formation about the primary particle hitting the atmosphere. Depending on the
primary particle, there are two di↵erent types of air showers, electromagnetic and
hadronic, which have distinctive features.

2.1.1 Electromagnetic air showers

A high-energy photon, electron or positron that enters the atmosphere initiates an
electromagnetic shower. In case of a photon, the primary process will be a e±-pair-
production within the Coulomb field of an atmospheric nucleus. Other processes
like the photoelectric e↵ect, Compton scattering and µ±-pair-production are sup-
pressed for initial photon energies E0 above a few MeV. The primary energy loss of
an incoming electron or positron is the emission of bremsstrahlung (see Fig. 2.1,a).

If the remaining energy of the secondary particles is still very high, then
subsequent bremsstrahlung and pair-production processes occur which in turn pro-
duce additional photons and e±-pairs. In the simplified model of Heitler [Matthews
(2005)], one assumes the alternating continuation of these two processes while the
energy at each iteration is equally distributed across the particles: photons and lep-
tons. Hence, the energy of each particle decreases by the factor of two after each step
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while the number of particles obviously doubles each time. In this model, the dis-
tance between subsequent interactions is d = X0 ln 2 where X0 is the characteristic
amount of matter traversed by a particle, the so-called the radiation length, which is
usually measured in g/cm2 (X0 ' 37g/cm2 in air). It corresponds to 7/9 of the mean
free path for pair production by a high-energy photon and to the mean distance over
which a high-energy electron loses all but 1/e of its energy by bremsstrahlung [Rieke
(2012), Weekes (2003)].
As the shower evolves with atmospheric depth, the energy of each individual particle
reaches the critical energy Ec (⇡ 83 MeV in air), where energy losses through ioniza-
tion become the dominant process for electrons which rapidly cool and thermalize.
At this point in the atmosphere the number of particles in the shower reaches its
maximum Nmax = E0/Ec and starts to decrease below this height. As also the
energy of the bremsstrahlung photons falls below the pair production threshold no
new leptons will be produced and this is why the cascade dies out. In the simplified
Heitler model the ratio between photons and electrons at the shower maximum is
1 to 2. In real showers, however, it is shifted more towards photons as more than
one bremsstrahlung photon is created during one radiation length transversed and
because many electrons are absorbed in the air.
Besides the longitudinal expansion of a shower there is also a lateral spread due to
multiple scatterings of low-energy electrons within the air shower and the deflection
of charged particles within the Earth’s magnetic field. A cylinder around the shower
axis with the Molière radius Rmol = 9.6 g·cm�2/⇢ ⇡ 80m (at sea level) contains on
average 90% of the shower energy.
The whole shower evolution takes about 10�4 s while traversing the atmosphere.
The maximum number of particles in the shower is proportional to E0 and the
depth of the shower maximum scales with the logarithm: lnE0. The atmospheric
height of about 7 to 12 km above sea level corresponds to the shower maximum of
gamma-rays of 20 GeV to 20 TeV and the first interaction usually happens after
the gamma ray traversed one radiation length of atmosphere, which is at an typical
altitude of 20km. [Grieder (2010)]

2.1.2 Hadronic air showers

Besides the electromagnetic air showers a much more frequent scenario occurring in
the atmosphere is the generation of hadronic air showers. They are induced by a se-
ries of successive inelastic collisions of high-energy cosmic-ray particles like a proton
(or a heavier nucleus) with the nuclei of air molecules and are far more numerous
than the VHE gamma rays.
During each strong interaction, an energy dependent number of secondaries (e.g.
pions, kaons, nucleons, light baryons) is produced. Most of these secondaries (e.g.
charged pions) will also collide with other nuclei of the atmosphere, while others
rather decay into photons or leptons. This particle multiplication gives rise to a
cascade of secondary particles (see Fig. 2.1,a).

One can divide the hadronic air showers into three components: the electromag-
netic, the muonic, and the hadronic component. The electromagnetic component
contains the electrons, positrons and photons produced in sub-cascades that have
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2.1. AIR SHOWERS

Fig. 2.1: a) Schematic view of the development of the two di↵erent types of air showers:
electromagnetic (left) and hadronic (right) [Otte (2007)].
b) Monte-Carlo simulations of extensive air showers show the longitudinal developments
of a cascade initiated by a single 100 GeV photon and a single 100 GeV proton. Red
tracks are used to indicate electrons, positrons and gamma rays. [Schmidt (2005)]7
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been initiated by the almost immediate decays (⇡ 10�16 s) of neutral pions into two
gamma rays.
The charged pions and kaons, however, have much larger decay times (⇡ 10�8 s).
This is why they rather collide with nuclei of the atmosphere before they decay and
produce new generations of less energetic hadronic secondaries. The multiplication
will continue until the energy of each secondary drops below the pion-production
threshold. Those remaining nucleons and other high-energy hadrons belong to the
hadronic component of the shower.
The smaller energy of secondaries makes the decay of the charged pions and kaons
into muons more likely. The muons (and neutrinos), generated during such decays,
represent the muonic component of the shower.
Because most of the produced hadronic secondaries are pions, with about equal par-
tition into ⇡+, ⇡� and ⇡0, is assumed that at each interaction about one third of
the energy is dissipated by the electromagnetic component. Taking into account all
possible interactions, the overall fraction of the initial energy E0 that is transferred
to electrons, positrons and photons depends on the magnitude of E0.

As one can see in Fig. 2.1, there exist significant di↵erences between both types
of air showers. The lateral spread, for example, is much wider in case of hadronic
showers than in electromagnetic ones due to the high transverse momentum gained
by the secondary particles in inelastic scattering and decay processes. Further the
irregular structure of the cascade, due to complex multiparticle processes, is a clear
sign for a hadronic shower as well. A third distinctive characteristic of hadronic
showers is the larger interaction length which made them penetrate more deeply
into the atmosphere than it is the case for electromagnetic showers. More detailed
descriptions can be found in [Gaisser (1990), Grieder (2010)].

2.1.3 Cherenkov emission of air showers

The energetic secondary particles generated during the evolution of an air shower
move with ultrarelativistic speed v through the atmosphere whose refractive index
n(> 1) decreases with height h. If v > c/n the charged secondaries emit the so-
called Cherenkov radiation. A simplified explanation of this type of photon emission
makes use of Huygens’ construction.
A charged particle, moving through a dielectric medium, polarizes the molecules of
the medium which relax back to mechanical equilibrium and emit electromagnetic
waves as the particle passes by. According to the Huygens principle, the emitted
waves move out spherically at the phase velocity of the medium. If the particle
moves faster than the phase velocity c0 = c/n of the medium, the emitted waves add
up constructively to a wavefront propagating away in a cone around the particle
direction with an opening angle of ✓ (see Fig. 2.2):

cos(✓) =
c0

v
=

1

� · n(h)
(2.1)

with: n(h) = 1 + ⌘0 · e
�h/h0 (2.2)
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2.1. AIR SHOWERS

Fig. 2.2: Huygens’ construction of the
wavefront which leads to the coher-
ent Cherenkov radiation (blue) if the
charged particle (red) moves with a con-
stant velocity v > c/n through the
medium with refractive index n. The
emission angle is ✓ = arccos(1/n�).

To estimate the dependance of the refractive index n(h) on the altitude, we assume
an isothermal atmosphere and use the barometric formula with ⌘0 = 2.9 · 10�4 and
h0 = 7.1km.
In a more detailed explanation of the Cherenkov emission, found in [Longair (2011)],
the approach is the calculation of the radiation energy Erad emitted by a single
charged particle moving at constant speed v through a dielectric medium. In the
final term it is shown that

Erad /

����
Z

exp
h
i
⇣
k · x+

!x

v

⌘i
dx

����
2

=

����
Z

exp
h
ikx

⇣
cos(✓) +

!

kv

⌘i
dx

����
2

. (2.3)

If the exponent in the last equation is not zero, then the integral over all x is always
zero and there will be no radiative energy loss which means there is no Cherenkov
radiation. Hence, only if cos(✓) = �!/kv, there will be Cherenkov emission. This
condition leads to Equ. (2.1) if one takes into account that !/k = c/n.
The full equation for Erad (see [Longair (2011)]) is used to derive the amount of pho-
tons emitted per unit of the path length, the particle with charge Ze has travelled.
This formula is named Frank-Tamm-Formula and can be written in the following
form [Beringer et al. (2012)]:

dN

dx
=

dErad

dx

1

~! =

Z
2⇡↵Z2

�2

✓
1�

c2

v2n2

◆
d� (2.4)

In this equation ↵ = e2/4⇡✏0~c (' 1/137) represents the fine structure constant
and the refractive index depends not only on the height but also on the wavelength:
n ! n(h,�).

During the evolution of an air shower, charged hadrons and electrons travel only
short distances in a specific direction before the next interaction happens that in-
duces the emission of new particles, moving in di↵erent directions (see Fig. 2.1,b).
The distribution of Cherenkov photons on the ground is a superposition of the
emission cones around each single path of a charged particle taking into account
the increasing refraction index, the decreasing particle energy and the absorption
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of Cherenkov photons by the atmosphere. This is also the reason why the ob-
served spectrum deviates from the ��2-dependancy given in Equ. (2.4) and peaks
at UV/blue-wavelengths (see Fig. 2.3,b).
The best estimates of the Cherenkov spectrum and the spatial photon distribution
are achieved by numerical Monte Carlo simulations of air showers. In case of an
vertical electromagnetic shower induced by a 300 GeV gamma ray, the distribution
of the Cherenkov photons on the ground and their spectrum is similar to the one in
Fig. 2.3. One can see an almost constant photon density around the core position
up to a radius of ⇠ 120m. Beyond that distance, the density decreases exponen-
tially. The region of constant photon density is usually denoted as the Cherenkov
light pool of the shower and its diameter is independent of the initial energy of the

Fig. 2.3: a) Average radial Cherenkov photon distribution around the core position of a
simulated vertical gamma-ray shower (averaged over 100 showers). For comparison four
di↵erent initial energies are simulated [Prokoph (2013)].
b) The spectrum of the Cherenkov photons emitted by the same gamma-ray showers
simulated in a). With the absorption of the atmosphere taken into account (dashed lines)
and without (solid lines) [Prokoph (2013)].
c) Comparison of the Cherenkov light distribution on the ground between Monte Carlo
simulations of a 300 GeV gamma ray (left) and a 1TeV proton (right) for a detector 1.8km
above sea level [Bernlöhr (2000)].
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primary particle. The number of Cherenkov photons, however, depends strongly on
the energy of the primary particle and its zenith angle. This is because the amount
of atmosphere that has to be traversed by the cascade particles is much larger at
higher zenith angles which a↵ects the shower evolution, the Cherenkov emission and
the photon absorption.
In contrast to an electromagnetic shower the distribution of Cherenkov photons is
much more di↵use in case of hadronic showers which is due to their erratic structure.
This can be seen in the right picture of Fig. 2.3,c. Remarkable structures in this
distribution are the several circles of high photon density. The rings are caused by
muons that hit the ground before they decay. As the refractive index increases at
lower altitude also the Cherenkov angle increases. Hence, Cherenkov photons emit-
ted at large altitudes intersect with photons emitted by the same muon at lower
heights which leads to distribution of photons that peaks at a specific radius around
the impact point of the muon.

As a shower develops nearly with the speed of light, Cherenkov photons emitted
at di↵erent locations (heights) inside the shower reach the ground almost at the
same time. Hence, the time interval of Cherenkov photons produced in a typical
electromagnetic shower is in a range of 2 - 5 ns, while for hadronic showers the
interval is much wider (10 - 15 ns) due to its electromagnetic subshowers and the
larger transverse momentum of hadronic interactions.

2.2 Imaging Atmospheric Cherenkov Telescopes -
IACTs

Due to the opacity of the earth’s atmosphere to gamma rays, there is no chance of
observing them directly with ground-based telescopes. While satellite observatories
are able to measure high energy (HE) photons up to several hundreds of GeV, their
detector size is to small for e�cient VHE detections as those fluxes are much lower.
However, we know from the explanations above that such VHE gamma-rays gener-
ate air showers, which in turn produce Cherenkov light pools on the ground. Hence,
a detector, located somewhere inside this region and able to measure the Cherenkov
light, could be used to detect VHE gamma-rays indirectly with a much larger e↵ec-
tive area compared to space-based observatories. Basically the Earth’s atmosphere
is used as a calorimeter to sample the Cherenkov light from air showers [Jelley et
al. (1963)].
As the Cherenkov spectrum is close to the optical spectrum a specific detector setup
is necessary to reduce the background during the observations at night. Daytime
observations are not possible at all. Furthermore good weather conditions are also
required to reduce the absorption of Cherenkov photons in the atmosphere. There-
fore the duty cycle of ground-based detector systems is only at ⇠ 11%.
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2.2.1 Detection principle

Night sky background

A major di�culty in detecting air showers by the emission of their Cherenkov light
is the high flux of night sky background (NSB) photons (⇠ 1012 photons m�2 s�1

sr�1). The NSB is a combination of several di↵erent light sources which contribute
to the overall NSB light with di↵erent intensities depending on the pointing of
the telescopes, the location, the current date and the time of day. The di↵erent
contributions are:

zodiacal light: caused by the scattering of sunlight at the interplanetary dust
near the ecliptic; most intense shortly after sunset or before sunrise

air-glow: light emitted by atoms and molecules in the upper atmosphere; intensity
increases with larger zenith angle

man-made light: light from nearby cities or roads; depends on the detector lo-
cation

starlight: optical light from the stars; higher contribution at galactic sources

moon light: direct light from the moon or its scattering at clouds

The density of photons on the ground produced during the development of a gamma-
ray air shower depends on the initial energy (given in TeV). It is 100 photons m�2

TeV�1. All these photons reach the ground within a short period of ⇠ 10�9s - 10�8s
which leads to an average rate of ⇠ 1010 - 1011 m�2 s�1 for a 1TeV shower. This
is still smaller than the overall NSB rate but the direction of Cherenkov photons is
concentrated on a much smaller ellipsoidal area in the sky [Preuss et al. (2002)].

By imaging the light onto a camera which consists of many pixels, one is
able to determine the direction of the incoming photons which helps to distinguish
Cherenkov light from the NSB and other background sources (see 2.2.2). The rate
of NSB photons per pixel is more or less constant over all pixels (not at the edge)
and doesn’t change drastically within minutes. The number of Cherenkov photons
of an air shower entering a specific pixel during a small time interval of several nano
seconds will exceed the number of NSB photons entering the same pixel during the
same periode. To measure this e↵ect a high sampling rate of the data acquisition
system is necessary. In order to make it simple, one can say that we take an image
of the sky with a temporal resolution high enough to resolve single photons.

A telescope, able to map the light with spherical or parabolic mirrors onto a fast
camera in the focal plane of the mirrors [Weekes et al. (1989)], is therefore the most
suitable detector system. The camera of current systems usually consists of hundreds
of photomultiplier tubes (PMTs) sensitive in the wavelength range of Cherenkov
photons. Each of those PMTs represents one pixel of the camera. The PMTs and
the subsequent data acquisition system operate in the nano second regime. The dish
is large enough ( > 10m diameter) to collect su�cient amount of photons to improve
the signal-background ratio. Its shape is optimized to light sources far away from
the telescope which is true for air showers whose maxima is typically in heights of 8
km to 12 km.
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Reconstruction of gamma-ray direction

The detection principle is illustrated in Fig. 2.4. If the telescopes are inside the
Cherenkov light pool, the emission angle of each single region in the ellipsoidal
gamma-ray air showers will comprise the whole area of the dish. The nearly parallel
Cherenkov light beams of a single region in the shower is focused onto the camera
as can be seen in the enlarged side view of the telescope in Fig. 2.4.
The angular deviation from the optical axis of each emission point inside the shower
is measured by the distance of the image of this point from the center of the camera.
The image of the whole shower inside the camera is a slightly asymmetric ellipse
with an axis that is pointing towards the negative angular coordinates of the orig-
inal gamma-photon (�� and ✓�). This point in the angular coordinate system of
the camera represents a direction parallel to the gamma-photon direction. It would
be shone on only if the Cherenkov emission started already at the source of the
gamma-photon at nearly infinity.
As this is not the case, one has to estimate its position in the camera by extrapolat-
ing the axis of the shower image. The asymmetry and the roundness of the elliptical
shower image gives a hint on the distance of the point from the center of the image.
This method has to be used in systems with only one telescope [Otte (2007)] while
systems with more than one telescope, like VERITAS, use a di↵erent reconstruction
method [Hofmann et al. (1999)]. The advantage of several telescopes pointing all at
the same direction is the fact that due to their di↵erent locations on the ground the

Fig. 2.4: Sketched is the mapping of the shower image into the focal plane of a telescope.
As can be seen from the inset, the orientation of the image depends on the inclination of
the shower with respect to the telescope optical axis. The dashed point in the inset at
(-�� , -✓�) marks the image position a Cherenkov photon would produce if it would have
been emitted directly at the gamma-ray source. Therefore it corresponds to the reflected
direction of the primary gamma-ray. It is not visible but can be reconstructed with the
help of di↵erent shower images from di↵erent telescopes in the array (see text).

13



2.2. IMAGING ATMOSPHERIC CHERENKOV TELESCOPES - IACTS

shower images in the cameras have di↵erent orientations. As all shower axes of the
di↵erent camera images of the same shower point towards the same coordinates -��
and -✓� one can draw them together in one camera coordinate system and determine
the intersection point of the di↵erent shower axes to measure the direction of the
initial gamma-photon: �� and ✓�.

Besides the direction of the gamma-ray one is also able to reconstruct the core po-
sition where the gamma-ray would hit the ground if there would be no atmosphere
and no shower development. In a first step a common coordinate system has to be
introduced, which is called the shower plane. The shower plane is a plane perpen-
dicular to the reconstructed shower direction.
Taking into account the position of each telescope with respect to the shower plane
on can project all di↵erent camera images of the same shower on the common shower
plane. By extrapolating the axes of each projected shower image one should theo-
retically find a single intersection point. In reality one has to average over several
intersection points as each pair of axes intersect at a slightly di↵erent position due
to the inaccurate axis determination. At the center of gravity between all these
intersection points the shower axis is supposed to crosses the shower plane. The co-
ordinates of this point together with the information of the plane orientation in the
ground coordinate system are su�cient to calculate the core position of the shower.

2.2.2 Background

Besides the NSB there exist other sources of background light that make it harder
for IACTs to detect gamma rays. Especially cosmic hadrons (basically protons and
helium nuclei), cosmic electrons and muons can mimic gamma-ray showers in the
camera [Maier et al. (2007)].

Because hadrons are about one thousand times more numerous than gamma rays
their contribution to the background is the most prominent. But due to the much
wider, longer and more irregular shape of most of the hadron showers, their images
in the camera di↵er from the elliptical-shaped ones of gamma-ray showers. In sec-
tion 2.4 it will be described how the images are parameterized and which are the
most distinctive parameters to separate gamma-ray showers from hadron showers.
Unfortunately, this method only works for high-energetic hadron showers as it is
more di�cult for an IACT-system to distinguish between a low-energetic hadron
and a gamma-ray just by the shape of its image.
As the charged hadrons get reflected by the interstellar magnetic fields they arrive
isotropically on Earth. Only a small fraction of all the hadron showers detected by
the IACT has the same direction as the gamma-rays from a point source. Therefore
restricting the accepted arrival direction to a small area around the expected source
position will additionally help to suppress the hadron background.

Nearly impossible to suppress, are the electromagnetic showers induced by electrons
because they have the same elliptical shape. Although the number of cosmic elec-
trons is much smaller than the amount of hadrons entering the atmosphere [Chaisson
et al. (2013)], their contribution to the background becomes quite important after
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the shape cuts had been applied. The only way to reject most of them, is by re-
stricting the accepted shower direction to a small area around the expected position
of the gamma-ray source. This works because the arrival direction of the charged
electrons is isotropic.

Another important contribution to the background is the Cherenkov emission of
muons produced in hadronic air showers. Their lifetime is long enough to hit the
ground.
Depending on their impact parameter and their angular deviation from the optical
axis, di↵erent images are produced in the camera, as can bee seen in Fig. 2.5.
Especially the image of an muon hitting the ground some meters next to the mirror
can imitate a gamma-ray shower. (see Fig. 2.5,b ).
To suppress this kind of background, the stereoscopic approach of several telescopes
has been established. If the distance between the telescopes is large enough a muon
will produce an gamma-like image only in one of those telescopes. Requiring at least

Fig. 2.5: Sketched is the mapping of the di↵erent images a muon can produce in the
camera of a telescope. It is assumed that the Cherenkov angle is constant for all the
photons entering the telescopes:
a) A muon hitting the mirror parallel to the optical axis will produce a circle (blue) in
the camera. The red cross marks the center of the circle while the black dot is the camera
center. There is more light on the right side of the circle because the muon crosses the
mirror left of the center.
b) A muon with the same direction as in a) but not hitting the mirror. The resulting
image is an incomplete circle as only a small part of the rotational symmetric Cherenkov
emission enters the mirror. The center of the incomplete circle is still in the middle of the
camera.
c) A muon not parallel to the optical axis hitting the mirror. It produces a distorted cir-
cle in the focal plane with a center that deviates form the camera center. As the camera
covers only a small area in the focal plane, only the right part of the circle is recorded.
If the camera coordinates are given in degrees, then the red cross represents the angular
deviation of the muon direction from the optical axis and the radius of the circular im-
age corresponds to the Cherenkov angle of the atmosphere ⇠ 10 - 100 meters above the
telescopes.
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two images in two di↵erent telescopes will significantly reduce the amount of false
detections induced by muons.

2.3 The Very Energetic Radiation Imaging Tele-
scope Array System (VERITAS)

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a
ground-based gamma-ray observatory consisting of four imaging Cherenkov tele-
scopes, sensitive to gamma-ray photons at energies between ⇠ 85 GeV and ⇠ 30
TeV, with an energy resolution of ⇠ 15% at 1 TeV. The angular resolution of the re-
constructed gamma-ray direction is ⇠ 0.1� at 1 TeV (68% containment). VERITAS
is located at the Fred Lawrence Whipple Observatory (FLWO) in southern Arizona,
USA (+31� 40’ 30.21”, -110� 57’ 7.7”), at an altitude of about 1270 m above sea
level [Holder et al. (2011)]. As operations are only possible in dark nights during
good weather conditions, VERITAS currently obtains about 1000 h of observations
in a typical calendar year. During the monsoon season in July and August no ob-
servations are possible and the whole system is shut down.
In 2005 the first telescope started observations and it took two additional years until
the full, four telescope configuration was completed. The full array began operation
in April, 2007 but was improved in Summer, 2009, by the relocation of one of the
four telescopes. This modification made the overall array layout more symmetric, as
can be seen in Fig. 2.6, which in turn led to a better sensitivity primarily through an
improved angular resolution. In this configuration less than 30 hours are necessary
to detect a 1% Crab Nebula-like source with 5 standard deviations (5�) [Perkins et
al. (2009)]. A further improvement was made in Summer, 2012, as all PMTs in all
four cameras were replaced by high-quantum-e�ciency devices [Kieda (2011)]. The

Fig. 2.6: Aerial view of the VERITAS array around the FLWO Visitors Center at the
base of Mount Hopkins, Arizona. Image credit: VERITAS collaboration
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data that is used in this study was taken before and after that upgrade. Therefore
both VERITAS states will be described in the following sections.

2.3.1 Telescopes

Mechanical structure and optics

For the VERITAS telescopes a Davies-Cotton design [Davies et al. (1957)] was
favored over a parabolic design. In a Davis-Cotton design, several small, spherical
mirrors, that are equally distributed all over the dish, are arranged in a specific way
to create a common focus at the focal length f (see Fig. 2.7,a). This is not possible
with a single, spherical mirror that has the same size as the dish. The Davis-Cotton
design requires a spherical shaped dish with a curvature radius of f . The camera
is located at the focal length f . The single, spherical mirror tiles, with curvature
radii of 2f and focal lengths of f , are mounted on the dish and are aligned towards
a point on the optical axis of the telescope that is 2f apart from the center of the
dish. This way, a distant (at infinity) point-like object, located along the optical
axis, will be focused exactly onto the center of the camera.

Fig. 2.7: a) Illustrated is the mapping of on-axis and o↵-axis rays onto the focal plane
of a Davies-Cotton mirror geometry. The angle between the on-axis ray (parallel to the
optical axis) and the o↵-axis ray is ✓. Taken from [Actis et al. (2011)]
b) Picture of a VERITAS telescope: mirror tiles, OSS, counterweight and quadrupod

As the reflector consists of several small, identical mirror facets, the production is
much cheaper than that of a reflector with a parabolic design, where each mirror
facet has to have a di↵erent shape, depending on its position on the dish, in order
to form a single, big parabolic mirror together with the other facets. It is also much
easier to maintain and replace parts of the reflector. This design also has smaller
o↵-axis aberrations than a parabolic reflector so that it has good image quality out
to a few degrees from the optical axis. The only disadvantage is the time spread
in the point-like image of a planar wavefront impinging perpendicularly on the tele-
scope. This spread is caused by the di↵erent lengths of reflected rays depending on
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the position where they hit the reflector. Such a problem could only be avoided by a
parabolic reflector. However, analytic and simulated studies by [White (2005)] show
that 90% of the light received by a VERITAS reflector reaches the camera within 2
ns. So it is still small enough to study the time dispersion of the Cherenkov emission
from an air shower.

In case of a VERITAS telescope, the single mirror facets are mounted on a tubular
steel optical support structure (OSS) with a diameter of 12 m and a curvature radius
of 12 m as well (see Fig. 2.7,b). The total reflector area is about 110 m2 and consists
of 350 identical hexagonal, spherical mirror facets with a side-to-side dimension of
61 cm and a curvature radius of 24 m. The mirror reflectivity is better than 80%
over the wavelength range relevant to Cherenkov light (280 nm - 450 nm) and is
better than 90% at the peak Cherenkov radiation wavelength of 320 nm [Holder et
al. (2006)]. As the reflectivity decreases over the time, the single facets have to be
re-coated from time to time. Each of those mirror tiles has to be aligned manually to
achieve a common focal plane 12 m apart from the dish. After a perfect alignment
the point spread function (PSF) of the whole dish is less than 0.05� [McCann et al.
(2010)] at the center of the camera which is smaller than the size of a single PMT
( 0.15�).
The camera of each telescope is mounted on a quadrupod that is attached to the
OSS. To balance out the torque on the system from the camera, counterweights
are located behind the OSS. This whole construction is attached to an altitude-
over-azimuth positioner at the top of a ⇠ 6m tall pedestal. The slewing speed in
both axes, altitude and azimuth, is one degree per second during normal operations.
To monitor the current pointing direction, a database logs the information send
from the positioner encoder every 250 ms. The mechanical pointing accuracy of a
VERITAS telescope is typically better than ±0.01� [Holder et al. (2006)].

Camera and electronics

The camera of each telescope is installed inside a focus box which is a tough light-
tight, water-tight structure attached to the quadrupod. It can closed during daytime
with a remote control operated garage-style shutter to protect the PMTs from UV
exposure. The camera consists of 499 cylindrical PMTs arranged in a hexagonal
grid forming a circle (see Fig. 2.8,a) with a diameter large enough to provide a FOV
of 3.5�. Because there is still dead space between the PMTs due to their cylinder
shape, additional light concentrators are attached to the front of each PMT which
focus the light on the center of the PMT photocathode. These so-called Winston
cones have a hexagonal entrance aperture to fit perfectly next to the neighbor-
ing Winston cones in the camera (see Fig. 2.8,b). The diameter of each entrance
aperture corresponds to a FOV of 0.15�. All the light captured by a single PMT
and its Winston cone represents the signal of one single camera pixel. An addi-
tional feature of the Winston cones is the fact that the PMTs are protected from
ambient background light as the angle of entry is so small that only light coming
from the opposing dish is able to reach the PMT photocathode [Nagai et al. (2007)].

The main characteristic of the PMTs is that they provide fast reaction times (. 2 ns)
and high gains to capture the quick Cherenkov light pulses from the air showers. In
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the beginning all VERITAS telescopes had been equipped with Photonis XP2970
PMTs whose quantum e�ciency (QE) inside the range of the Cherenkov spectrum
was 18%-22%. These PMTs got replaced by new super-bialkali Hamamatsu R10560-
100-20 PMTs in summer, 2012. The new PMTs are characterized by a higher QE of
32%-34%, which results in a 35-50% increase in photon sensitivity compared to the
previous ones. This e↵ect leads to a lower energy threshold for the whole VERITAS
array [Kieda (2011)].

Fig. 2.8: a) The 499 pixel camera in the focus box. The PMTs are mounted on specially
designed bases that fit into an aluminum frame. The preamplifiers are located immediately
behind the PMTs. Taken from [Varlotta (2013)]
b) Winston cones mounted on the 499 pixel camera. The front face of the light cones is
the focal plane of the camera. Taken from [Cogan (2006)]

The current amplification factor between the photocathode and the last anode inside
the PMT is called gain. It depends on many factors which are slightly di↵erent for
each PMT. Fortunately it can be adjusted by changing the high voltage (HV). In
case of VERITAS the nominal gain for all PMTs is set to 2 ·105. Therefore the volt-
age of each PMT has to be controlled by a multi-channel power supply. A typical
value of the applied HV is ⇠ 850 V. The best HV value for each PMT, to ensure an
equal response across the entire camera, is stored in a database. These values can
change during the lifetime of the instrument, therefore they have to be validated
from time to time by dedicated calibration tests. As it is necessary to protect the
PMTs against too high anode currents a HV control program suppresses the high
voltage in the PMT in case the current exceeds 40 µA or is above 30 µA for several
seconds. Before the anode signal is sent out to the data acquisition (DAQ) and
trigger system, a preamplifier, located at the base of each PMT, boosts the anode
current signal by an additional gain of 6.6 and converts it to a voltage signal. Bias
currents from the night sky background are removed in the preamplifier through an
AC coupling with the PMT signals.
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2.3.2 Trigger- and Data Acquisition System

Trigger

Due to the night sky background and the large amount of relativistic muons in the
atmosphere, a sophisticated trigger system is necessary to accept only the Cherenkov
photons coming from air showers as the readout rate is limited in the data acqui-
sition system. Therefore the trigger consists of three hierarchical conditions and is
explained in detail in [Weinstein (2007)].

The first-level trigger (L1), which works on the single-pixel level, consists of constant
fraction discriminators (CFD) processing the analogue photomultiplier-tube signals.
In a CFD the input signal gets split into three equal components. A zero-crossing
discriminator (ZCD) releases a trigger exactly at the time when the voltages from
the time-delayed ( some nano seconds ) first component and an inverted, attenuated
copy of the second component cancel each other. This signal is sent ( with a delay)
to the data input pin of a flip-flop where an additional clock signal is necessary to
produce the final 10 ns CFD output pulse (see Fig. 2.9).
The clock signal is provided by a simple threshold discriminator (TD) which gen-
erates a trigger signal if the programmable threshold level is reached by the third
component. For standard, dark sky VERITAS operation, the threshold is set to
50 mV (corresponding to 4 - 5 photoelectrons). By using an additional ZCD the
exact trigger time of the final CFD output signal is not a↵ected by di↵erent PMT
pulse sizes as it would be the case for a simple TD.
Noise in the CFD will increase the jitter of the ZCD which can be minimized by
adding a DC o↵set. Unfortunately a high DC o↵set will also decrease the trigger
e�ciency and so a low o↵set is intended every time the noise is small enough. As
the NSB noise varies a lot during observations the DC o↵set is not fixed but changes
automatically according to the ZCD trigger rate. This rate feedback loop (RFB) is
not a general feature of a CFD but was developed especially for the VERTAS-L1-
Trigger [Hall et al. (2003)].

Fig. 2.9: A block diagram of the VERITAS first-level trigger. Taken from [Hall et al.
(2003)]
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After the CFD triggered, the signal is sent as input to the second-level trigger (L2).
This trigger operates on the camera level and generates an output pulse when at
least three adjacent pixels release a CFD pulse within a coincident time window
that is set to 5 ns [Zitzer (2013)]. Its components are located in the Trailer next to
each telescope.
This pattern-selction trigger successfully rejects fluctuations due to NSB and PMT
afterpulsing as these events usually trigger only one or two adjacent pixels within
such a short coincidence window. The projection of the Cherenkov photons from an
air shower, however, results in a compact image of several adjacent pixels. The time
spread of the triggering in adjacent CFDs is related to the temporal evolution of an
air shower, which is in the order of nanoseconds. If the trigger time of the CFDs is
very accurate, then a coincidence window of 5 ns in the L2 is su�cient wide enough
to trigger three adjacent pixels that are part of an air shower image.
The necessary time accuracy is the reason why a ZCD is preferred over a simple

TD. An exact timing in the CFDs facilitates a smaller L2 coincidence window, which
leads to a smaller false-trigger rate as the NSB is suppressed. If the false-trigger
rate is low enough, one is able to decrease the CFD threshold, which improves the
detection of low-energy air showers.

In case the L2 trigger decision is positive, its output pulse is sent to the array-level
trigger L3 (see Fig. 2.10). During standard operations this trigger requires a L2
signal from two or more telescopes within 50 ns before it forms the final trigger,
that initiates the readout of the data. The L3 is located inside the control room
building and connected to the L2 of each telescope by cables.
The purpose of this trigger logic is the rejection of local muons, which dominate
the low energy background and are able to produce images in the camera similar to
those of gamma-ray air showers. Fortunately the Cherenkov light from local muons
will only impinge on an area large enough to trigger just a single telescope, which is
not enough for a positive L3 trigger decision. By reducing the background contri-
bution of local muons one is able to lower the CFD threshold much more and gain
a better sensitivity in the low-energy range.
For the L3 trigger it is important to account for the di↵erent delays of the L2 sig-
nal due to di↵erences in the cable transmission, the telescope positions and their
pointing directions. The larger the zenith angle, the higher is the delay because the
Cherenkov wavefront hits the telescopes at di↵erent times. The Pulse Delay Module
(PDM) is the component in the L3 responsible for the correct delay calculation and
equalizes the di↵erent L2 signals by adding a proper delay to each of them.
The delay-adjusted L2 signals are then fed into the Sub-Array Trigger (SAT) board
which issues a command to the data acquisition system to record the event. As the
signal needs time to propagate back to the telescopes, the SAT will stop for 10 µs
after an event decision. Via a combination of outgoing PDM delays and internal
compensation on the SAT board, the array trigger ensures that an L3 trigger is re-
ceived at the telescope a fixed time after the corresponding L2 trigger was produced.
Also the readout of the data takes some time. Altogether, after a L3 trigger, the
system will be busy for ⇠ 300 - 400 µs which results in a deadtime of 6 - 8% at a
trigger rate of 150-170 Hz or 10-11% at a rate of 225 Hz [Weinstein (2007)].
Apart from providing the final trigger signal, the whole L3 system provides event
numbers, event masks and log rates, timing and diagnostic information to disk.
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Since the PMT upgrade in summer 2012 the L3 rates are much higher than be-
fore. At the moment typical rates during normal operations with four-telescope at
80 degrees elevation are about ⇠ 450Hz. Before the upgrade, the rates had been
much lower under the same conditions: ⇠ 250 - 270Hz. As a consequence, also the
deadtime increased after the upgrade to values of 14 - 17 % (at trigger rates of ⇠
390 - 450 Hz).

Data Acquisition System

A positive L3 trigger decision will result in the data acquisition of the photon pulses
caused by the air shower in the camera. The whole data acquisition process and the
necessary trigger operations are shown in Fig. 2.10.

Parallel to the trigger path a second copy of the PMT pulse is continuously digitized
by a 500 Mega-sample per second flash analog to digital converter (FADC) with a
8-bit range. This corresponds to a dynamic range of 28(= 255) digital counts (d.c).
A 16 kB ring bu↵er holds the digitized information while awaiting an L3 trigger
signal. As the width of a single sample is 2 ns and its size is one byte, the ring
bu↵er can record up to 32 µs. During this time a trigger decision has to be made,
including the signal propagation from the telescopes to the L3 and back.
As soon as the L3 trigger signal is received by the telescopes, the FADC stops the
digitization, sends a BUSY signal to the L3, which stops triggering, and waits for
an additional signal from the L3 that defines the event type and provides the event
number. Depending on the event type the amount of samples that get readout
(readout window) are di↵erent. During normal operations only 20 samples (40 ns)
are readout to reduce the dead-time of the whole system.
As there is some time between the pulse digitization and the stop induced by the L3
signal, the position of the pulse inside the bu↵er is found several samples after the
current start position of the bu↵er. Due to the fixed time between the L2 trigger
production and the reception of the L3 signal also the position of each recorded
pulse is located a fixed number of samples behind the current bu↵er position. These
so-called look-back times are fixed to 3000 samples for all telescopes (but can be
changed manually). If one wants to fine tune the position of the pulse inside the
readout window one can simply change the PDM delays in the L3 system.

In case the pulse is too large, it will saturate at 255 d.c. and the information about
the true pulse size is lost. As this a↵ects the energy measurement, the problem is
avoided by using two channels with di↵erent gains. If the pulse is small enough
each signal coming from the pre-amplifiers is further amplified by a factor of 7.25
at the high-gain channel (default scenario). Otherwise the low-gain channel gets
connected to the FADC for a short moment, right after the high-gain pulse went
through. Along this channel, a delayed copy of the analog signal is amplified just by
1.25. The FADC bu↵er will then record the saturated high-gain pulse, followed by
the delayed low-gain pulse, for which the full shape is preserved as it doesn’t exceed
the range. The look-back time is decreased by 20, shifting the readout window to the
position of the delayed pulse. Also an additional HiLo-bit is set in the datastream,
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Fig. 2.10: Illustration of the data acquisition process and the trigger operations. Taken
from [Weinstein (2007)]

indicating that the pulse has to be multiplied by a factor of 7.25/1.25 = 5.8 during
the o✏ine analysis [Aune (2012)].

The 50 custom built FADC boards (10 channels each) of a single telescope are dis-
tributed across 4 VME crates [Buckley et al. (2003)]. By knowing the exact position
inside each FADC bu↵er and the size of the readout window the data is readout by
the VME crates and sent to a server next to the telescope. There, the fragments of
the event, coming from di↵erent FADCs, get combined to a single telescope event.
This so-called event builder has to arrange the fragments according to the event
number, given by the L3, and stores them in a memory bu↵er. Additionally each
telescope event gets assigned a timestamp, which is provided by a GPS clock, that
has an accuracy of 1 µs.
In the following step the stored telescope event is sent via ethernet to the central
harvester server. The harvester program receives the data from the event builders of
each telescopes and forms array level events. These events also include supplemen-
tary information, provided by the L3 system, that have been transferred directly to
the harvester. The final array level events are saved in a custom designed binary
format named VERITAS Bank Format (VBF) [Hays (2007)].
Events are not stored separately. A sequence of array level events recorded during a
specific observing period is called a run. The duration of a run is manually defined
by the observer. In a last step, the harvester combines all the array level events
produced in this period and adds some additional information about the run and
the telescope configuration. Once the data run is complete, the files are compressed
and transferred to local and remote archival machines.
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2.3.3 Observations and GRB follow up

Normal operations with VERITAS usually get performed during clear, dark nights.
As there is also a total shut down in the summer months of July and August due
to local monsoon, a typical observation time per year is ca. 980 hours. There exist
di↵erent observing modes where the telescopes either point directly at the source
or right beside it. The wobble mode is such a technique, where the o↵set between
the source position and the camera center amounts to 0.5�. This is the preferred
method as it allows for simultaneous background measurements within the same
run. A typical run duration is about 20-30 minutes after which the wobble position
is changed to another cardinal direction, or the telescopes are pointed to another
source. All these operations are executed by a local observer via a GUI of the Ar-
ray Control program running on a server next to the control room. This program
controls all necessary lower-level programs responsible for the telescope pointing,
triggering, data acquisition, calibration and monitoring.
In order to explore a wide range of science topics and open questions, many di↵er-
ent objects are observed by VERITAS. Those include active galactic nuclei (AGNs)
like blazars and radio galaxies; possible dark matter targets like the Galactic center
and spheroidal dwarf galaxies; cosmological distant sources like gamma-ray bursts
(GRBs), galaxy clusters, and distant AGNs; and galactic sources like pulsars, pulsar
wind nebulae, supernova remnants and binary systems. Most of these source classes
have already been detected by VERITAS and show a large variety of photon fluxes
and spectral behavior.

The main interest of this work was to study di↵erent analysis techniques for fast
transient sources like GRBs. Due to their sudden, unpredictable appearance, special
observing procedures are necessary. For all other sources there is usually enough
time to schedule the observations in advance. This observation plan is subordinated
to the observations of GRBs because it is important to observe them as fast as pos-
sible.
The dedicated GRB follow-up observation procedure starts with an notification of
the the Gamma-ray bursts Coordinate Network (GCN) obtained by a computer at
the VERITAS site that is constantly connected to the GCN via a TCP/IP socket
connection. The GCN notifications are the result of information received in real-
time by the GCN system from the various spacecraft, processed into a standard
format and automatically distributed to various ground-based instruments and ob-
servatories. The response to GRBs in most of the satellite missions and the final
GCN process are fully automated and no human interaction is required. The com-
puter at VERITAS is also running an automated program which is configured to
process only the GRB location notifications from the Swift, Fermi, AGILE, and
INTEGRAL missions. This program rejects all GRB notifications of sources with a
declination of less than -30� (too far south for a successful VERITAS detection) or
if the 68% containment radius of the localization by the satellite is greater than 10�

(much larger than the VERITAS FOV). As Fermi and Swift missions also calculate
the likelihood of the triggered event actually being a GRB, a third rejection criteria
is a likelihood below 50%.
If all filters haven been passed, then the relevant informations about the GRB and its
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position are transmitted to the Array Control program which prepares all necessary
steps for a repointing. An audio alert is played at the control room, notifying the
observers that a possibly-observable GRB has been detected and a pop-up window
appears in front of the Array Control GUI (if the burst is above 20� elevation) asking
the observer to confirm the repointing of the telescopes by a single click. This way,
the time delay between the beginning of a GRB flare and the start of the repoint-
ing is minimized which is necessary, as this process is the most time consuming in
the whole chain due to a slewing speed of 1�/s. If there is enough time during the
repointing, the observers can start a new run. Otherwise they should extend the
current run duration for an additional 20 minutes.
The maximum amount of observation time spend on a GRB depends on the localiza-
tion accuracy of the satellite missions. If it is smaller than the FOV of VERITAS,
the observing window lasts for maximum 3 hours after the burst trigger. If it is
wider but still better than 10� (68% containment radius), VERITAS observes the
center of the error circle for maximum 1 hour. However, in both cases the observing
duration will stop before it reaches its maximum if the elevation declines below 20�.
More information about the GRB observing procedures can be found here [Aune
(2012)].

2.4 Analysis of VERITAS data

The software package that had been used during this work to analyze the VERI-
TAS data is called eventdisplay. Originally, it was designed as a display for the
VERITAS prototype data by Gernot Maier (DESY) and Jamie Holder (University
of Delaware), but evolved into a full analysis package.
In the following sections the whole analysis chain is explained, which includes the re-
construction of the air-shower direction, the estimation of its energy, the distinction
of gamma-ray showers from the hadron-induced background and the determination
of their significance.

2.4.1 Image parametrization

At the beginning of the analysis the di↵erent images of the same shower event in the
di↵erent telescope cameras have to be parametrized. The orientation, the centroid
position, the shape and the size of the images are necessary input parameters for the
reconstruction algorithm. A first step of the image parametrization is the analysis
of the FADC traces in each camera. In a preceding procedure, the o↵set and the
noise in the FADC of each channel have to be measured.

FADC Pedestal

The FADC records the negative voltage output of the preamplifiers, located at the
base of each PMT, with a rate of 500 MHz. The voltage signal is converted to digital
counts (dc) with a conversion factor of 7.85 mV/dc. It is also possible to associate
the value in dc to a number of photoelectrons (pe).
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Due to the AC coupling, each constant contribution of the PMT pulse to the FADC
trace is suppressed and the baseline should be at zero. Then the amount of NSB
light can only be measured by the magnitude of the trace fluctuation around zero.
As positive voltage values cannot be digitized by the FADC, a negative voltage,
corresponding to approximately 16 dc, is added to the AC coupled PMT output.
Hence, the value of each sample in a FADC trace without any Cherenkov light con-
tribution will vary around a mean value close to 16 dc with a standard deviation
that depends on the amount of the NSB. Because the artificial o↵set is not exactly
the same for each channel and also the NSB can vary over the duration of a run, it
is necessary to do some calibrations during the data taking.
An important calibration task is the readout of FADC traces without any Cherenkov
light. As these traces don’t exceed the CFD threshold, the readout is triggered ex-
ternally during special time slices (every 3 min) with a rate of 1-3 Hz. The mean
value of such a trace is called the pedestal. It is determined either by taking into
account all the special pedestal trace samples readout during the whole run or only
those ones readout during a single time slice.
For the estimation of the amount of light contained in a Cherenkov pulse, measured
by a single channel, the values of all the trace samples belonging to the integration
window get add together. In the next step, the previously calculated pedestal, mul-
tiplied by the size of the integration window, is subtracted from this sum.

The significance of a measured signal pulse depends on the background fluctuation
which is the result of the NSB. If one calculates the sum of the samples inside the
integration window of the externally triggered pedestal traces and builds an distribu-
tion over all the traces readout in a single time slice, one can determine the standard
deviation for this specific integration window in this time slice. This standard devi-
ation is also called pedvar. It is determined for di↵erent integration windows giving
the opportunity to chose the optimal one during the o✏ine analysis later on. If the
excess, calculated over a certain integration window, is similar to the pedvar of the
same integration window, it is likely to be just a background fluctuation due to NSB
without any Cherenkov signal contribution.

Both values, pedestal and pedvar, have to be calculated before the FADC trace anal-
ysis is performed. However, the necessary information is contained in the same data
file. It stores the FADC pulses from Cherenkov events and the separately triggered
pedestal events whose readout is forced at certain times during a run.

FADC trace analysis

A typical PMT pulse produced by Cherenkov photons from an air-shower will result
in a FADC trace similar to those in Fig. 2.11. It is characterized by a fast rise to a
negative maximum and a slightly slower decay back to the pedestal value.
A necessary parameter, required by the o✏ine analysis at a later stage, is the inte-
grated charge of each FADC trace minus its pre-measured pedestal. The integration
window (summation window) is smaller than the whole readout window. An ideal
integration window should start where the pulse begins to rise and it should stop
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after the pulse’s decay back to pedestal level. This way the error introduced by the
pedestal (and its fluctuation) is minimized.
Unfortunately, the trigger signal, that initiates the readout, doesn’t reach every
FADC at the same time. Hence, due to the fixed lookback time, the pulse appears
at di↵erent positions in the readout window, even if the photons hit the PMTs ex-
actly at the same time. Therefore a good time calibration is necessary to adjust the
start of the integration window in each FADC separately. The arrival time of each
pulse is determined at the rising edge when the trace exceeds half of the maximum
pulse height. This parameter is called T0.

By measuring this value in special calibration runs (flasher runs) [Hanna et al.
(2010)], executed once each night, one is able to determine the temporal o↵sets of
the trigger between di↵erent channels induced by hardware issues (i.e. cable length)
and environmental e↵ects (i.e. temperature) which can change from night to night.
During a flasher run, a LED light source in front of the camera produces light pulses
with a rate of 300Hz. As the light is uniformly distributed over the whole camera,
the pulses reach each PMT at the same time. The uniform light intensity is also
necessary to measure the di↵erences in the gain of each PMT, which is very impor-
tant as the integrated charge of each FADC channel needs to be comparable.

Besides the temporal di↵erences, caused by the hardware, there can be also a gradi-
ent in the pulse arrival time between adjacent pixels belonging to the same air-shower
image. This is due to the temporal shower evolution and the di↵erent distances be-
tween the location of the Cherenkov emission inside the shower and the camera.
Therefore an additional shift, besides the o↵set given by the flasher run, will help to
optimize the integration window’s position in channels where the pulse arrives later
due to the gradient.

Fig. 2.11: A typical FADC trace of a PMT pulse induced by Cherenkov photons. The
dashed orange line represents the pedestal value while the vertical dashed lines indicate
the arrival time T0. The grey area visualizes the width and the position of the summation
window used in the analysis for the charge integration.
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Estimating the optimal shift is done by the so-called double-pass methode [Holder
(2005)]. In a first pass, all FADC traces belonging to the same event get integrated
over a large summation window of 18 samples. This window starts at a fixed posi-
tion and is only shifted by the o↵set measured with the flasher runs. Besides the
integrated charge, also the T0 is determined of each FADC trace. After the image
cleaning and the reconstruction of the image axis, described in the following sec-
tion, a linear fit of the T0 versus the distance of the PMT from the image center
along the image axis is determined. With this information in hand, the start time
of each FADC pulse can be estimated more accurately according to the position of
the PMT in the camera. In a second pass the same traces get integrated again, but
this time over a smaller summation window of 6 samples. This window is placed at
the position where an pulse is supposed to occur including the information of the
flasher runs and the linear fit of the first pass.

Image cleaning & parameterization

Before a shower image can be parameterized, all pixels that measured solely pho-
tons from NSB have to be removed from the compact shower image. The cuts used
during the cleaning are based on the signal-to-noise ratio in each pixel as the noise
in each trace is not constant and changes with the NSB. The signal is the integrated
charge of each FADC trace minus its pedestal and the noise is given by the pedvar
value calculated according to the size of the integration window. In case the signal
is 5 times larger than the pedvar, this pixel forms an image pixel. After all pixels,
fulfilling this criteria, have been detected, a second pass is executed which accepts
all those pixels whose signal is just 2.5 times the pedvar if at least one of their neigh-
boring pixels is already identified as an image pixel. These pixels, detected during
the second pass, form the border pixels. If at the end of the cleaning procedure an
image pixel does not have any neighbor image or border pixels, it is removed as well.
All remaining pixels form the image of the air shower.

When all pixels that belong to the shower image are found, its parametrization is
the next step in the analysis chain. It is based on a moments analysis of the el-
liptical image formed by an typical gamma-ray shower and was first mentioned by
[Hillas (1985)]. The parameters determined during this process are called the Hillas
parameters. Today, not all of the original Hillas parameters are still under usage.
Instead some other parameters have been developed. Here, only the frequently used
ones are presented (see Fig. 2.12).
The summation of the integrated charge of all image pixels will define the size

(in dc) of an image. It is the zeroth order moment and one of the most important
parameters. The first order raw moment is the center of gravity of the image, also
called centroid. This leads directly to the determination of another parameter, which
is the distance between the camera center and the centroid, measured in degrees.
Images very close to the expected source position tend to have a circular shape,
making it di�cult to determine its orientation. Images far away, at the edge of the
camera, get not fully recorded. If the telescopes point at the source (or at least very
close to it), then the expected source position is near the camera center and the
distance parameter can be used to reject both kind of images.
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Fig. 2.12: A shower image in the camera after cleaning. Only the colored pixels survived
the cleaning cuts and the color represents the integrated charge of each pixel. During
the parameterization process all the important parameters (brown) are determined. The
source position (magenta) is reconstructed with the help of the shower images from the
other telescopes (see next section).

After calculating the second order central moments a covariance matrix is con-
structed which is used to determine the orientation and shape of the image. The
eigenvector of the highest eigenvalue corresponds to the direction of the image’s
main axis and its eigenvalue represents the variance of the image along this axis. It
is called the length (in degree) of the image. The second highest eigenvalue marks
the width (in degree) of the image which is the variance perpendicular to the main
axis. With these information in hand more parameters can be calculated, like the
angle alpha between the main axis and the line connecting the centroid with the
camera center. Further, one is able to calculate the intersection angle between the
major axes of two telescope images plotted in the same camera coordinate system.
A small angle indicates images whose main axes are almost parallel to each other.
In such case a minor error in the orientation of the axes will result in a large error
in the position of the intersection point.
Another important parameter is the fraction of image size contained in pixels at the
camera edge, which is also called the loss parameter. A high loss value indicates
images at the edge of the camera exceeding its boundaries. Hence, a large part of
the image is not recorded which would lead to an incorrect image parametrization.
Due to this problem another image parametrization procedure had been developed
besides the geometrical one introduced by Hillas. This newer method assumes a
two-dimensional normal distribution to describe the shower images and applies a
log-likelihood fitting algorithm. This way also some of the truncated images at the
edge can be recovered.
While some of the mentioned parameters get used to reconstruct the shower direc-
tion, impact position and its energy (size, centroid, main axis), others will be used
to distinguish between hadronic and leptonic shower images (length, width) or to
reject images whose parametrization will be error-prone (distance, loss).
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2.4.2 Event reconstruction

After the images of a single shower event had been parametrized for each telescope
separately, these information get combined to reconstruct the direction of the shower,
its impact parameter and its energy. To improve the quality of the reconstruction,
images who are not fully covered by the camera, whose main axis is too parallel to
other image axes or whose elliptical shape is less pronounced, will not be taken into
account. The cut values used during this study to reject these kind of images are:
size > 100 dc, number of image pixels > 4, loss < 0.2 and an angle between two
image axes of more than 10�. If at least two images from di↵erent telescopes survive
these cuts the analysis program continues with the geometrical reconstruction.

Geometrical reconstruction

The reconstruction of the direction of the shower event is based on the stereoscopic
approach explained in section 2.2.1. The principle is illustrated in Fig. 2.13,a. The-
oretically the axes of all accepted images, superimposed into a single camera plane
coordinate system, should intersect all at the same point which represents the direc-
tion of the shower. In reality each pair of major axes produce their own intersection
point. If there are N images passing the cuts, the number of intersection points will
be N · (N � 1)/2.
The algorithm used by eventdisplay determines the source position from a weighted
average of all intersection points, which is in principal the same method as Algorithm
1 in [Hofmann et al. (1999)]. The weights include the size of the images, the ratio
of width-over-length from each image, and the sine of the angle between two axes.
In this way more weight is given to high quality (i.e. brighter and more elongated)
image pairs.

After the source position has been found, an axis, connecting the centroid with the
source position, is constructed for each image and projected onto the shower plane.
The position of the plane can be chosen arbitrarily, important is just the fact that
it is perpendicular to the reconstructed shower direction (source position). The
intersection points of the di↵erent axes in the shower plane are determined and the
shower core position is then given by the weighted average of all the intersection
points. The weighting is done in the same way as during the determination of the
source position. In Fig. 2.13,b the shower core is determined under the usage of four
shower images.
Now all necessary informations are available to reconstruct the three-dimensional
shower axis and determine the point where it hits the ground, which is the so-
called shower core. The distance of this point to the telescope positions, is the
impact parameter of each telescope. As far distant showers tend to produce parallel
images, the angular resolution worsens, which can be avoided by applying a cut on
the shower core position of 250 m away from the array center.

Besides the shower direction and the shower core the third parameter that is de-
termined during the reconstruction, is the emission height of the shower maximum
[Aharonian et al. (1997)]. The shower maximum is mapped onto the camera close
to the position of the image’s centroid. With at least two images in two di↵erent
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Fig. 2.13: a) Reconstruction of the shower direction (source position) by superimposing
the di↵erent camera images and their main axes. The source position (magenta star) is
the weighted average of all intersection points.
b) Reconstruction of the shower core. The centroids and source position from each camera
are projected onto the shower plane. The weighted intersection of the lines, connecting
source position and centroid, provides the shower core position.

telescopes, the software is able to estimate the emission height by simple trigono-
metric relations. Necessary informations are just the angular distance d between the
centroids of two images, superimposed in one camera coordinate system, and the
spatial distance r between the two telescope positions, perpendicular to the pointing
direction of the telescopes. Then the following relation r/d ⇡ h delivers the emis-
sion height h of the shower maximum with respect to the orientation of the camera
plane. As the error on h is larger than the size of the array, the fact is ignored that
the four camera planes are not contained in a single plane if they are not pointing
towards zenith.
If more than two telescopes reconstruct an image, again a size-weighted mean value
of h is calculated. Additionally, the �2-value is determined. Both parameters, the
mean value and the �2-value, can be used to reduce the amount of background events
since hadronic showers and single muons penetrate deeper into the atmosphere than
gamma-ray initiated showers.

Energy reconstruction

As the energy of a gamma particle is proportional to the amount of Cherenkov
photons emitted by the air shower, it is related to the total charge contained in
the shower image (size). Because it is not possible to measure the instrumental
response with a test beam the usage of Monte Carlo simulations of gamma-ray
showers is required. Furthermore the size of an image also depends on the shower
direction (zenith, azimuth, wobble o↵set), the impact parameter and the NSB level.
Therefore a wide parameter space has to be covered by the MC simulations.
For each set of simulated showers with a specific zenith angle, azimuth range, wobble
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Fig. 2.14: Lookup tables for the sigma value (left) and the median (right) are shown for
showers at 20� zenith angle, with a wobble o↵set of 0.5� and a NSB level similar to that
observed in the Crab Nebula FoV.

o↵set and NSB level a separate table is produced that contains the median and
the 90%-width (�) of the image size distribution (logarithmic scale) for each pair
of simulated primary energy and impact parameter (see Fig. 2.14). The table is
produced for each telescope separately.

During the analysis of a certain air shower, its primary energy is estimated by invert-
ing that lookup table of the mean size which was generated for this specific shower
direction and NSB level. The program searches in the table row, that corresponds to
the reconstructed impact parameter of the shower, for a bin whose value fits best the
measured image size. By knowing that bin and its position also the corresponding
energy is given ( = x-value of bin position) together with the 90%-width (�) value
which is also stored in the same bin. As the shower parameters are usually in be-
tween those values used to generate the lookup tables, the final results are obtained
by interpolation.
For each telescope the estimated energy and �-value of the same shower will di↵er
from the results of the other telescopes. The final shower energy is therefore derived
by averaging the energy estimates from all telescopes, weighted by one over �2.

2.4.3 Gamma-hadron separation

After the reconstruction and parametrization of an air shower the next step in the
analysis chain is the distinction between gamma-ray showers and the cosmic-ray
background.

Shape cuts

The most e↵ective distinction procedure between cosmic-ray and gamma-ray showers
is a hypothesis test based on the usage of the width w and length l parameter
measured for each contributing telescope image separately.
As it was mentioned before, the images of cosmic-ray showers are wider and longer
than those of gamma-ray showers with the same image size. The hypothesis that
the shape corresponds to a gamma-ray shower is the null hypothesis. The used test
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statistics, which are called mean reduced scaled width - MSCW and mean reduced
scaled length - MSCL, are defined in the following way:

MSCW =
1

NP
i=1

Wi,w

NX

i=1

✓
wi � wMC(R, s)
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◆
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�2
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(2.6)

with: N = No. of images passing the quality cuts (6 4)

where wMC(R, s) and lMC(R, s) are the median width and length, retrieved from the
same MC simulations used to generate the energy lookup tables, while �w,MC(R, s)
and �l,MC(R, s) are the corresponding 90%-widths. Those values are stored in lookup
tables whose y-axis represents the impact parameter R and the x-axis represents the
image size s. Both parameters, the width and length of a gamma ray shower, de-
pend on the shower direction, NSB level and impact parameter. Hence, there exists
a table for each telescope, each simulated shower direction and each simulated NSB
level.

If data is examined and the null hypothesis is true, then the test statistics of
the width (MSCW) and the length (MSCL) are almost normal distributed around
zero. The alternative hypothesis is the hypothesis that the shower is induced by a
cosmic-ray particle. The test statistic distribution of cosmic-ray showers is skewed
and shifted towards positive values for MSCW and MSCL (see Fig. 2.15).
The cut values for both mean scaled parameters are chosen in a way that the fi-

Fig. 2.15: Comparison of the mean scaled parameters (MSCW: left; MSCL: right) for
gamma-ray and background data from simulations and Crab-Nebula observations done
in 2007 (3 telescope data) by Gernot Maier [Maier (2007)]. In the data the cosmic-ray
events, measured in the OFF-region, get subtracted from the events in the ON-region
to determine the gamma-rays (for explanation of ON- and OFF-region see 2.4.4). All
distributions have been scaled to similar fluxes.
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nal probability of accepting a cosmic-ray shower (type 2 error) is very low, while
the probability of rejecting a true gamma-ray shower (type 1 error) is not too
high. The cut ranges used during this study are: -1.2 < MSCW < 0.35 and
-1.2 < MSCL < 0.7.

Theta square cut

Because even the shape cuts can not completely remove all background events from
the dataset, one has to take into account the reconstructed position of each event.
As the direction of cosmic-ray air showers is isotropic, most of them can be rejected
by accepting only events whose direction is close to the expected gamma source
position. The angular distance of the reconstructed direction to the expected source
position is called ✓. However during the analysis usually the square of this value is
used.
Depending on the type of source (point-like or extended ) and its spectrum, which
a↵ects the quality of the reconstruction and the event statistics, di↵erent maximum
cut values of ✓2 are used. For point-like sources with a moderate spectrum, all events
with ✓2 > 0.008 deg2 get rejected. In case of a soft spectrum source, for which the
determination of the shower direction is less accurate due to smaller images, even
events with ✓2-values up to 0.02 deg2 are accepted.

2.4.4 Background estimation

The final goal is the measurement of a significant excess in the number of gamma-like
events caused by gamma rays from an observed source. For visualization all recon-
structed positions of gamma-ray-like events are transformed into right ascension and
declination and filled into a two-dimensional sky map. By looking at the radial ac-
ceptance curve in Fig. 2.16 one can see that the systems ability to reconstruct events
decreases at larger distances from the camera center (pointing direction). Therefore
all events with a distance of more than 2� are removed from the sky map.
In general, those maps are smoothed and each bin contains the number of events

Non found in the circular ON-region around that bin (see also A.1). By this pro-
cedure, the error in the reconstruction of a source position is taken into account.
Therefore the radius of this area is the same as the ✓-cut value. A sky map for the
ON-region events is called ON-map.
Lots of bins in the ON-map contain background events from the irreducible isotropic
cosmic-ray showers. In case their positions are close to a gamma-ray source, the bins
also contain signal events. To determine the number of signal events NS for each
bin in the sky map it is necessary to know the number of background events NB for
that bin. Then

NS = Non �NB.

As NB cannot be measured directly like Non, several di↵erent estimation procedures
had been developed for IACTs. For this study it is su�cient to concentrate on just
two of these methods. The idea for both methods is to use the same dataset that
was used to generate the ON-map. The di↵erence is, that now each bin contains
the number of events No↵ found in dedicated OFF-regions for this bin. Such a sky
map is called OFF-map.
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Fig. 2.16: Radial acceptance curve of the VERITAS camera. It is obtained by analyzing
data from a part of the sky with no strong gamma-ray source in the FOV. In this example
two di↵erent sets of cuts are applied on the data: soft-spectrum cuts (black) and moderate-
spectrum cuts (red). The relative rate is calculated with respect to the weighted mean of
the first 4 bins. It is assumed, that the acceptance in the camera is symmetric in azimuth.

These OFF-regions should not contain any gamma-like events from other potential
sources in the FOV to insure only contribution from background events to No↵ .
These sources are bright stars (V magnitude > 7), other gamma-ray emitters and
the observed target itself. The user is able to specify the size of the circular exclusion
regions around those objects. Events measured in those areas are not taken into
account for the calculation of No↵

As the OFF-regions of each bin have other locations and sizes than its ON-region,
No↵ has to be multiplied by a normalization factor ↵ to estimate the number of
background events NB in this bin: NB = ↵No↵ . The ↵ is di↵erent for each bin
position and is therefore stored in a map as well, the so-called ↵-map.

Ring-background method

In the ring-background method the OFF-region is defined as a ring placed around
the ON-region (see Fig. 2.17,a). The user defines its radius and its width. Usually
it is chosen in a way that the area of the ring is 10 times larger than the size of
the ON-region. For the determination of ↵ it is necessary to take into account
the decreasing acceptance of the IACT at positions several degrees away from the
pointing direction (see Fig. 2.16). So the ↵ for each bin is the ratio of the cumulative
acceptances in the ON-region and the OFF-region of that bin. It is required that
regions around known gamma-ray emitters and bright stars are excluded from the
background regions to avoid possible over- and underestimation.
With this background method one is able to estimate the NB at each bin in the sky
map. However it is necessary to generate acceptance predictions for each di↵erent
cut-set under the usage of MC simulations. Depending on the cuts used and the
accuracy of the simulations the error on the acceptance, especially at the edge of
the sky map, is not negligible.
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Reflected-regions method

To avoid the necessity of an acceptance simulation the reflected-regions method can
be used. Here the OFF-region of a single bin is divided into several circular areas
(same size as the ON-region), arranged on a ring around the pointing position (see
Fig. 2.17,b). The radius of the ring is equal to the distance of the bin from the
pointing position. In doing so, no correction for the relative camera acceptance is
required. The ↵-value is just the inverse of the number of OFF-areas along the ring.
Again, it is necessary to avoid possible over- and underestimation. Therefore an
OFF-area will be removed from the list if it intersects with an exclusion region. The
ON-region and some of its surrounding area are excluded as well from the OFF-
region.
The user is able to specify the minimal and maximal amount of OFF-areas and
also the minimal distance from the ON-region to the nearest OFF-areas along the
ring. The algorithm will then try to fit the highest possible amount of OFF-areas
into the ring, taking into account the exclusion regions. In case the highest possible
number of OFF-areas is larger than the maximum required number of OFF-areas,
the algorithm starts to randomly remove some of the redundant OFF-areas. In case
it is lower than the minimal required amount of OFF-areas, the algorithm is not able

Fig. 2.17: Comparison of two di↵erent background estimation methods applied on data
from the same section of the sky. These examples show the the di↵erent OFF-regions
(light green) used to calculate No↵ for the test bin (white). They also show the di↵erent
treatment of the exclusion regions around the observed target (magenta) and around bright
stars (orange). The exclusion regions a↵ect only the OFF-regions, not the ON-region.
a) The OFF-region of the ring-background method is a ring around the test-bin. The
algorithm sums up all events inside the OFF-region to get No↵ except those ones that also
enter an exclusion region.
b) The reflected-regions method tries to fit as many OFF-areas as possible onto a ring
around the pointing direction, taking into account the deletion of every OFF-area that
intersects with an exclusion region. If the pre-defined maximum number of OFF-areas
(here it’s 10) is exceeded, randomly some redundant OFF-areas get deleted as well. All
events that enter one of the remaining OFF-areas add up to No↵
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to provide a background estimation for that bin. This is always the case for bins very
close to the pointing position in the center. Hence, this method can only be used
if the telescopes point slightly next (usually 0.5�) to the putative source position,
which is the so-called wobble-mode. During a run, a wobble position is fixed, but
it is attempted to change the wobble position for each run. Possible positions are
north, east, south and west from the source.
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Chapter 3

Transient gamma-ray sources

In gamma-ray astronomy and in astronomy in general many of the observed sources
show a transient behavior. Depending on the source type there are various reasons
why its flux is variable. The measurement of its temporal evolution will contribute
a lot to the informations an observer can gain about the physics behind an astro-
nomical object. In this chapter di↵erent, transient source types are presented and
it is explained what can be learned about the emission mechanisms of a source by
determining its temporal evolution. The focus is on objects that are potentially able
to emit very-high-energetic (VHE) photons in the GeV-TeV range (> 100 GeV) and
whose flux variations are in the order of seconds to minutes.

3.1 Emission of very high-energetic (VHE) gamma-
rays

At the beginning of this chapter we will briefly review some general non-thermal
emission mechanisms that cause VHE gamma-rays and are valid for all astronomical
objects we are dealing with in the following sections.

3.1.1 Acceleration of charged particles

In this section we want to explain briefly the process of charged particle acceleration
in the vicinity of astronomical objects. Being able to emit VHE photons the kinetic
energies of charged particles need to be even higher which makes an e�cient acceler-
ation mechanism necessary. The Fermi acceleration [Fermi (1949)] is such a process
and plays a very important role in many astrophysical models. There are two di↵er-
ent types of Fermi acceleration which depend on the structure of the plasma. In case
of randomly moving magnetized interstellar clouds we are dealing with the second
order Fermi acceleration. The acceleration mechanism at shock fronts is called first
order Fermi acceleration. We will describe both processes in short while much more
details can be found in [Drury (1983), Blandford et al. (1987), Bell (1978)].

Second order Fermi acceleration: Consider a cloud with velocity vc relative to
an average rest frame for the interstellar medium. The magnetic field in the cloud
can reflect a cosmic ray due to scattering of the particles by magnetohydrodynamic
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waves [Schlickeiser (2002)] or due to the magnetic mirror e↵ect [Longair (2011)]. If
the particle gets reflected from an approaching cloud it will gain energy while it will
lose energy during a reflection with a receding surface.
To prove this, we first make a Lorentz transformation into the frame where the
moving cloud is at rest. The transformed parameters are marked with an apostrophe.
In this frame, the energies before and after the reflection (E 0

b and E 0
a) are the same

while the components of the particles’s momentum p

0 (with p

0 = m�v0v
0 ) parallel

to vc (p0b k and p0a k) just change their sign:

E 0
a = E 0

b ; p0a k = �p0b k =) p

0
a · vc = �p

0
b · vc (3.1)

After the transformation back to the laboratory frame with � = (1� v2c/c
2)�1/2 one

can calculate the energy di↵erence �E:

Ea,b = �(E 0
a,b + p

0
a,b · vc) ; p

0
a,b · vc =

✓
Ea,b

v2c
c2

� pa,b · vc

◆
(3.2)

�E = Ea � Eb = �2�(p0
b · vc) = �2�(m�v0b k · vc) (3.3)

In the last step we have already used the relations from Equ. (3.1). Now one can
determine the conditions necessary to make a particle gain energy during a refelction:

if �E > 0 : v0b k < 0 ) vb k < vc with: v0k =
vk � vc

1� vkvc/c2
(3.4)

if �E < 0 : v0b k > 0 ) vb k > vc (3.5)

It is clear that energy gains result from head-on collisions which happen when the
parallel component of the particles relative speed measured inside the cloud v0b k is
negative. Contrary to this, the particle loses energy when this velocity component
is positive in the proper frame. Back in the laboratory frame one can state that the
energy gain occurs if the parallel velocity component vb k is smaller than the speed
of the cloud vc.
If the incidence angle ↵ = \(vb,vc) between the particle and the cloud is completely
arbitrary, then the probability for the case: vc > vb k (= |vb| cos↵) is always higher
than for the case: vc < vb k. So the net e↵ect after several scatterings at di↵erent
clouds with random ↵ is a gain in energy. That the mean energy change is positive,
can be also shown by substituting the second equation of (3.2) into (3.3). We find
that �E depends on pb · vc and v2c/c

2. For arbitrary ↵ at di↵erent scatterings the
sum of all pb · vc terms average to zero and the remaining energy gain results from
the second order term: v2c/c

2.

While this second order term represents the fact that a collision between particle
and cloud on average leads to an increase in energy, there is another second order
e↵ect which takes into account the rate ⌫ of collisions inside a volume with several
random moving clouds. Let the mean distance traveled between clouds be L. Then
the rate of collisions is

⌫ =
|vb � vc|

L
(3.6)
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One can see that the rate for head-on collisions (vb · vc < 0 ) vb k < 0) is higher
than that for overtaking collisions (vb ·vc > 0 ) vb k > 0). As the head-on collisions
are responsible for the energy gain of the particle and the probability of vb · vc < 0
is exactly 1/2 for particles inside the volume the sum of all energy changes after
several collisions is positive.

First order Fermi acceleration: A more e�cient particle acceleration than the
second order Fermi acceleration is the first order Fermi acceleration. As a simple
example one can assume the same environment as for the second order Fermi ac-
celeration but this time the movement of the magnetized clouds is not arbitrary.
Instead they are approaching each other and a particle bouncing back and forth
between them is always reflected head-on. Hence the first order change (p · vc) in
energy is always positive and doesn’t cancel out.

A realistic environment with similar conditions is found in an astrophysical shock
wave which is a discontinuity between two media moving relative to each other. An
example of a shock wave would be a supernova where the explosion expels much or
all of a star’s material into the surrounding interstellar medium. The interstellar
medium ahead of the shock front is called the upstream while the swept up material
behind the shock front is the downstream region. In the frame where the shock wave
is at rest the speed of the upstream and the downstream plasma is u1 and u2 while
u1 > u2 (see Fig. 3.1). So the speed of the shock wave in the laboratory frame is
always faster than the speed of the downstream.

Fig. 3.1: Di↵usive shock acceleration in the frame of the shock front: the shaded vertical
region indicates the shock, the circular blobs denote di↵erent scatterings, and the solid
line with arrows indicates the path of an idealized fast particle. The coordinate z and the
velocities u1 and u2 are shown for the case of a parallel shock. In a laboratory frame,
where the upstream medium is at rest, the shock wave moves from right to left in this
example.

On each side of the shock wave there are magnetohydrodynamic (MHD) waves that
scatter the particles and change their momentum direction but not its modulus. As
those MHD waves convect along with the plasma a particle gains energy if it enters
the plasma head-on and gets reflected after several scatterings.
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Imagine a particle inside the upstream region (the interstellar medium). The shocked
material behind the shock front (the downstream) approaches the particle with a
relative velocity of vrel = u1 � u2. Hence, in the reference frame where the inter-
stellar medium is at rest, the particle gains energy as it collides head-on with the
approaching downstream plasma. After several scatterings inside the downstream
plasma, the particle will eventually move back to the upstream plasma with a higher
speed than it had at the beginning. If also a reflection happens in this region, the
whole process starts again but with a higher particle energy. Repeating this cycle
several times will e�ciently increase the energy of the particle.
A more quantitative approach, used in various text books (e.g. [Longair (2011)]),
reveals that the average gain in energy after one cycle is proportional to the rela-
tive speed vrel between the upstream and downstream fluid. This is why it is called
first order Fermi acceleration. Further calculations take into account the probability
that the particle remains within the acceleration region after one collision. It can
be shown that the distribution of high energy particles accelerated by this process
follows a power law:

N(E)dE / E�q+2dE (for fully ionized gas: q = 4)

3.1.2 Non-thermal radiation mechanisms

In the previous section, the mechanisms of particle acceleration are described. It is
now necessary to discussion the processes by which the accelerated, charged particles
lose energy in the form of VHE radiation.

Accelerated charged particle

By solving the Maxwell equations for a single charged particle in free space, one can
see that a propagating electric field Erad is created only if the particle is accelerated.
If one is interested in situations, where the particle has a relativistic velocity and
the distances between the particles position r0 and the measurement of the electric
field at r = r0 + R is very large (R ! 1), one has to use this equation for the
electric field:

Erad(r, t) =
q

4⇡R✏0c


n⇥ [(n� v/c)⇥ v̇/c]

(1� (n · v)/c)3

�

| {z }
:= f(R,tret)

�����
ret

(3.7)

Here the vector n = R/R is the unit vector from the charged particle to the point
of observation and v is the velocity of the particle. For both vectors we have to
use retarded times (tret = t � R/c) due to the propagation duration between the
observer and the position of the particle.
Another important parameter to calculate, is the magnitude of the Poynting vector,
measured at the position of the observer: S = E2

rad(r, t)✏0c. It describes the energy
flux per unit area. We use this value to calculate the energy loss rate dW/dt (= dP )
per solid angle d⌦: dP/d⌦ = S ·R2 = |f(R, tret)|2 · q2/(16⇡2✏0c). We are especially
interested in the equation that describes the spectral distribution. By the usage of
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Fourier transformation and the application of the Parseval’s theorem we derive the
following:

Z +1

�1

dP (t)

d⌦
dt =

q2

16⇡2✏0c

Z +1

�1
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2dt =
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(3.9)

(see [Longair (2011), Jackson (1998)]). In the end we get the spectral energy dis-
tribution per solid angle by calculating the Fourier transformation of the vector
function f(R, tret), which is just a placeholder for the long term between the brack-
ets in Equ. (3.7). One has to know the particle’s trajectory, its temporal change in
velocity and the position of the observer. Hence, also the possible directions and
the spectrum of the emitted radiation depend on these characteristics.

Synchrotron radiation

As synchrotron radiation is one of the most important non-thermal radiation mech-
anisms we describe briefly its characteristics and results. For detailed information
please read [Longair (2011)].
The particle acceleration, necessary to produce radiation, is created by strong mag-
netic fields close to the astronomical objects that emit relativistic electrons. Those
electrons are bound to the magnetic fields and travel along spirals around the di-
rection of those field lines. After choosing a sophisticated coordinate system all
necessary informations are available to calculate f(R, tret). At the beginning of
the derivation one assumes only one electron traveling along a spiral with a fixed
pitch angle ↵ = \(v,B) which emits light that is observed under a specific an-
gle ✓ = \(n,v). In the end one has to integrate over all the fixed parameters, if
one wants to know the total energy loss. It is not necessary to repeat the whole
derivation but to state just some important steps:

• one has to take into account the real three-dimensional curvature, whose radius
a is larger than the gyroradius rg = �mev/eB if the pitch angle ↵ of the particle
is lower than 90� �! a = rg/ sin↵

• as the radiation is highly beamed along v, if v ⇡ c, it is only visible for an
observing direction close to v (✓ 6 1/�) and only during a short fraction of
a whole electron orbit around the field lines �! using the approximation of
small ✓ and small tret

• E ? n with E = E? + Ek �! dI(!)/d⌦ get split into two components:
dI?(!)/d⌦ for E? ? B-n plane and dIk(!)/d⌦ for Ek k B-n plane �!

di↵erent dependencies on t and ✓ between both components lead to di↵erent
polarisations: linear if ✓ = 0; elliptical if ✓ 6= 0
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Fig. 3.2: a) Beamed emission of a single electron moving with relativistic speed along a
spiral trajectory around a magnetic field. The pitch angle between v and B is ↵ and the
opening angle of the beamed emission is 2✓ ⇡ 2/�. As an example, the emission of the
same electron is shown at three di↵erent times in the detailed plot on the left side. Only
the direction of v is changing but not its modulus. The grey shaded circle at the edge of
the velocity cone in the bigger picture on the right side marks the area where the cone of
the beamed emission slips over during a single orbit of the electron. So at each observing
position that is inside the grey area, one can only observe pulsed emission.
b) Plot of function F (x) with x = !/!c = ⌫/⌫c.

• transformation of the equations in a way that parts of them can be replaced
by modified Bessel functions K2/3 and K1/3

• integration over the solid angle d⌦ for one period of gyration (grey area in
Fig. 3.2) to get I?(!) and Ik(!) �! d⌦ = 2⇡ sin↵ d✓

As the radiation is concentrated in a small angular space (✓ 6 1/� ) around v, if
v ⇡ c, the emission pattern of a single electron on a spiral trajectory will be the
envelope of a so-called velocity cone (see Fig. 3.2,a ) with an opening angle that is
equal to 2↵ and with an envelope thickness of ✓ ⇡ 2/�. The beamed radiation will
precess together with v about the direction of magnetic field lines in the center of
the velocity cone. As it is necessary to determine the intensity emitted per time by
one electron, one has to divide the emitted radiation I(!) (= I?(!) + Ik(!)) during
one gyration period by the time of that period Tr = ⌫�1

c = 2⇡�me/eB. The final
result is the following:

j(!) =
I?(!) + Ik(!)

Tr

=

p

3e3B sin↵

8⇡2✏0cme

· x

Z 1

x

K5/3(z)dz
| {z }

:= F (x)

(3.10)

with: !c = 2⇡⌫c =
3c�2eB sin↵

2vme

and: x =
!

!c
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and for the mean energy loss rate per electron one has to integrate over ! and an
isotropic distributed pitch angle ↵:

�

✓
dW

dt

◆

sync

=

Z 1

0

Z ⇡

0

j(!)d!
1

2
sin↵ d↵ =

4

3
�TcUmag

⇣v
c

⌘2

�2 (3.11)

with: �T =
e4

6⇡✏20m
2
ec

4
and: Umag =

B2

2µ0

In a next step, the asymptotic behavior of F (!/!c) is studied in the limits of high
and low frequencies:

j(⌫) / ⌫1/2e�⌫/⌫c

j(⌫) / ⌫1/3

for ⌫ � ⌫c

for ⌫ ⌧ ⌫c
(3.12)

That these asymptotic equations are true can be seen by looking at the plot of the
function F (!/!c) in Fig. 3.2,b. So for high frequencies an exponential cut-o↵ is
expected.

Now one knows the emission spectrum of a single electron at a certain energy entering
the magnetic field under a certain pitch angle. This study concentrates on cosmic
ray electrons that are accelerated by astrophysical shock waves. So one has to deal
with a large amount of electrons at di↵erent energies E and with arbitrary pitch
angels. For these scenarios one can assume that the pitch angle will be isotropically
distributed and that the energy distribution of the electrons is dominated by the
process of a first order Fermi acceleration: N(E)dE = E�pdE.
One has to multiply the energy distribution with j(!) from Equ. (3.10) and integrate
the result over the energy E. This is because also j(!) is a↵ected by the value of
the energy due to the internal parameter !c / �2 / E2. After a final integration
over the isotropic pitch angle distribution, the resulting emission spectrum will look
like this:

Jsync(⌫) / B(p+1)/2⌫�(p�1)/2 (3.13)

A detailed derivation can be found in [Longair (2011)].

Inverse Compton scattering

The interaction of relativistic electrons with low-energy photons through inverse
Compton (IC) scattering is one of the main important gamma-ray production pro-
cesses in astrophysical objects. During this process energy gets transferred from
high-energy electrons towards the isotropic distributed photons. Due to relativistic
aberration, this photon field is extremely anisotropic inside the comoving frame of
the relativistic electron (see Fig. 3.3). In this reference frame almost all ambient
photons approach the electron within a small angle of ⇡ ��1.

If ~! ⌧ mec
2 inside the comoving frame, it is a good approximation if we treat the

scattering as Thomson scattering. In this classical approach, the electric field Erad

of an incident radiation will cause the electron to oscillate with an acceleration of:
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Fig. 3.3: Relativistic electron moves through isotropic photon field. LEFT: laboratory
frame. RIGHT: rest frame of the electron

r̈ = eErad/me. As we know already from the section above, an accelerated electron
will lose energy by emitting radiation with a loss rate dW/dt that is proportional
to |r̈|2:

�

✓
dW

dt

◆
/|r̈|2 / |Erad|

2
) �

✓
dW

dt

◆
= �TS = �Tcurad (3.14)

with: �T =
e4

6⇡✏20m
2
ec

4
= 6.653⇥ 10�29m2 (3.15)

Here �T is the cross section of the Thomson scattering and urad is the energy density
of the radiation.
The goal is to calculate the energy loss inside the rest frame of the electron because
dE 0/dt0 = dE/dt will directly lead to the result valid for the laboratory frame.
Therefore we need to transform urad into u0

rad. After some algebra, involving the
relativistic Doppler shift formula and some geometrical considerations (see [Longair
(2011), Blumenthal et al. (1970)]) we end up with the following relation:

u0
rad(✓) = [�(1 + (v/c) cos(✓))]2urad (3.16)

urad doesn’t depend on ✓ if the energy density is isotropic in the laboratory frame.
If we integrate over the all ✓, assuming that each direction has equal probability, we
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will find the global U 0
rad which we can insert in the equation for dE 0/dt0:

�
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dE

dt

◆

rad,gain

= �
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=
4
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◆
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This equation describes the energy loss per time of the relativistic electron. The
energy transfer to the photon field is always positive with an average boost per
photon of 4/3 · (v/c)2�2. The maximum energy a scattered photon can acquire is
4�2h⌫0. This happens when an incoming photon, with frequency ⌫0, collides with
the electron head-on and gets reflected back on its original path.
There is also a remarkable similarity of the result in Equ. (3.18) to the expression
for the energy loss rate of the synchrotron radiation in Equ. (3.11). Therefore we
can assume that the intensity spectrum of the IC-scattered photons, produced by
the same power-law distribution of electrons that was used in Equ. (3.13), will show
the same functional behavior between ⌫ and the spectral index p of the power-law:

JIC(⌫) / ⌫�(p�1)/2
⇥

Z
⌫
(p�1)/2
0 n(⌫0)d⌫0 (3.19)

with n(⌫0) which is the density of photons before the scattering. This assumption
is proven to be correct in a long, but straightforward equation (see [Blumenthal et
al. (1970)], Equ. 2.64).
However Equ. (3.19) is only valid for the Thomson regime. In general the cross sec-
tion for Compton scattering is the Klein-Nishina cross-section taking into account
quantum electrodynamic e↵ects. This cross section is not constant anymore but
proportional to 1/(~!) for large energies. In such a scenario the power law of JIC(⌫)
is steeper: JIC(⌫) / ⌫�p

Synchrotron-self Compton radiation

Actually the synchrotron-self-Compton radiation (SSC) is not a di↵erent kind of
non-thermal radiation process. It is a combination of both processes described
above. It occurs when relativistic electrons produce low energy synchrotron radiation
which in turn provides the seed photon field for inverse Compton scattering by the
same electrons. As long as the energy of the photons before the inverse Compton
scattering is low enough (� ⇡ �T) the following equation is valid:

⌘ =
(dE/dt)IC
(dE/dt)sync

=
urad

B2/2µ0

(3.20)

This is the ratio between the two di↵erent energy loss rates. Where urad is the
photon energy density around the relativistic electrons and B is the magnetic flux
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density in this area. Observing the synchrotron radio flux density and the X- and
�-radiation from the same source region will then make it possible to estimate the
magnetic flux density at the source region. Of course only under the assumption
that electrons of nearly the same energies are responsible for the di↵erent emissions.

As long as the upscattered photons stay close to the relativistic electrons fur-
ther inverse Compton processes can occur. This way the high-energy photons will
again increase their energy until ultra-high energy �-rays are produced. However
the cross section will decrease with 1/(~!) because we are now in the Klein-Nishina
regime. Therefore, higher order scatterings result in much lower luminosities. For
more details about the SSC radiation see [Longair (2011)].

Bremsstrahlung

This process also based on the fact that accelerated charged particles will emit radi-
ation. The di↵erence is that this time the acceleration happens in the electrostatic
field of another charged particle when an electron moves at a high velocity past the
stationary nucleus. As the focus of this work is on astrophysical emission methods
of VHE �-rays, we need to concentrate only on Bremsstrahlung of relativistic elec-
trons entering a ionized plasma. Details on the exact derivation of the necessary
equations can be found in [Blumenthal et al. (1970)]. Here I just want to state
that the emitted intensity spectrum follows the power-law form of the accelerated
particles with the same spectral index [Longair (2011)]. Therefore it is possible that
ultra-high-energy electrons emit a measurable flux of bremsstrahlung in the TeV
regime [Atoyan et al. (2000)].

Neutral pion decay

Besides the already mentioned leptonic induced �-ray emission mechanisms there is
also the possibility of hadronic interactions that produce VHE photons. If protons
are accelerated to su�cient high energy to reach the threshold for proton-photon
interactions of ' 145 MeV [Kelner et al. (2008)], the high-energy protons would
interact with synchrotron photons to produce pions. The decay of the neutral pion
would result in high-energy �-ray emission up to the TeV energy [Cao et al. (2014)].
For this interaction, the energy transferred from the incident proton to the secondary
product is usually around 10% or more.

p+ � �!

⇢
p+ ⇡0

n+ ⇡+ (3.21)

⇡0 = � + � (3.22)

3.2 Transient gamma-ray emitters

In this section we will describe di↵erent astronomical objects that are known to
produce transient ultra-high energetic �-radiation. We will concentrate on objects
whose variability in this spectral range is of the order of minutes.
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3.2.1 X-ray binaries

Binary stars are astronomical objects that contain two stars which orbit around
their common center of mass. Roughly 33% of all star systems in our galaxy are
binary systems. A special class of binary stars are X-ray binaries (XRB) that are
luminous in X-rays. In our galaxy and the nearest neighbor galaxies there are a few
hundred sources of this kind.

General characteristics of X-ray binaries

In general, X-ray binaries are made up of a star, which emits optical light (optical
companion), and a compact object (a white dwarf, neutron star, or black hole).
Usually they originate from a binary system with a large mass ratio between the
two stars. The more massive star will evolve faster until it explodes in a supernova
by which a neutron star or black hole is produced. When the mass is too low there
will be no supernova but a white dwarf instead.
X-ray binaries are characterized by a high X-ray luminosity (1034 to 1038 erg/s),
hard spectra, and a high degree of variability of di↵erent nature. In case of an
accretion-powered binary the necessary energy is coming from the released gravi-
tational potential energy of infalling matter. This accreted matter stems from the
companion star and is transferred by stellar wind or by Roche lobe overflow (see
Fig. 3.4). The Roche lobe is a region defined in a coordinate system that rotates
together with the binary star. This teardrop-shaped space marks the area around
a star within which orbiting material is bound to that star taking into account the
centrifugal and the gravitational force [Longair (2011)].
An other mechanism for non-thermal emission at binary systems is the collision of
streams of matter ejected by both objects and the acceleration of particles in the
accrued shock fronts.

High-mass vs. low-mass companion

Besides those general characteristics, valid for almost all XRBs, any further property
can di↵er a lot from one XRB to another. By todays knowledge there is a large set
of subgroups in which we can separate di↵erent XRB with di↵erent characteristics.
A fundamental property, however, is the mass of the companion star which is used
to subdivide the XRB into two classes: High-Mass X-ray Binaries (HMXBs) and
Low-Mass X-ray Binaries (LMXBs). In HMXB the optical companion is a Be star
(M > 5M�) or OB supergiant (M > 15M�). They usually have long orbital periods
(days to tens of days) and mass transfer is by stellar wind. If the system contains
a Be star, it tends to have orbits with strong eccentricity and the mass transfer
is connected to the circumstellar disk of these fast rotating stars. In the case of
LMXB the companion is of spectral type A or later (M 6 2M�), the orbital periods
are shorter (hours to days) and the mass transfer is by Roche Lobe overflow which
occurs through the inner Lagrangian point, L1.(see Fig. 3.4).
In Table 3.1 we compare all important properties of the two di↵erent types of XRBs.
Detailed information about each parameter, and XRBs in general, can be found in
[Trümper et al. (2008)]
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Fig. 3.4: Two representative examples for mass transfer in a HMXB (stellar wind) and
in a LMXB (Roche lobe overflow) [Trümper et al. (2008)].

Properties HMXB LMXB
donor star O-B (M > 5M�) A-M (M 6 2M�)
LX/Lopt 0.001 - 10 100 - 1000

optical spectrum stellar-like reprocessing
mass transfer stellar wind Roche lobe overflow
accretion disk yes, small yes
X-ray spectrum hard (kT > 15 keV) soft (kT 6 15 keV)
orbital period 1 h -100 d 10 min - 10 d
X-ray eclipses common rare
magnetic field strong ( ⇠ 1012 G) weak (6 109 G)
X-ray pulsation common (0.1 - 1000 s) rare (1 - 100 s)
X-ray bursts absent common

Table 3.1: Comparison of HMXB with LMXB. LX/Lopt is the ratio of X-ray to optical
luminosity. All values and informations taken from [Trümper et al. (2008)]

X-ray and optical/UV Emission

The dominant emission mechanisms inside a XRB strongly depend on its type and
its composition. In case there is no strong wind ejected by the compact object, that
prevents material from falling into the gravitational potential, an accretion disk will
form around that object if the transferred matter has large angular momentum.
This is especially the case for Roche lobe overflow (i.e. LMXBs) but also happens
rarely during stellar wind accretion (i.e. HMXBs), however, the size of the disk is
much smaller in this situation.
The disk has di↵erential rotation, and generates shear which heats the gas. By this
e↵ect, energy will be transferred from a gravitational potential towards blackbody
radiation. The temperature is large enough to produce optical and UV-light and
even X-rays. This is also the dominating X-ray source of black-hole XRBs. For
non-black-hole XRBs, however, the energy release of the infalling matter, when hit-
ting the surface of the compact object, is the main source of X-ray emission. The
radiation mechanism is mostly thermal Bremsstrahlung and black body emission
with temperatures in excess of 107 K.
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In case of HMXB with a neutron star and a strong magnetic field the accretion
disk will be distorted and charged particles funnel along the field lines towards the
polar caps where they create a X-ray hot spot. Therefore the X-ray emission will
be pulsed if the dipole axis of the rotating neutron star is inclined and the hot spot
moves around the rotation axis. A consequence of accretion is that infalling material
close to the poles shorts out the electric field which is necessary for radio emission.
Therefore HMXBs are usually not radio pulsars.
The optical and UV light are coming from the companion star. In HMXBs, where
the massive companion star is still young and very bright, the luminosity is in the
same order as those from the X-ray radiation.

For the LMXB the dominating emission mechanisms are slightly di↵erent. As the
magnetic fields are not strong enough matter gets accumulated over larger parts of
the NS surface for some time until a nuclear burning flash may ignite, giving rise to
X-ray bursts.
Any optical/UV emission of the late type companion star in a LMXB is too weak. It
will be outshone by optical and UV light generated by reprocessing of the X-ray pho-
tons. This happens when X-rays, produced at the compact object, get intercepted
by the accretion disk and the star. After the absorption of the X-ray photons by
hydrogen and helium atoms a subsequent emission process will be initiated during
which optical and UV photons are produced.

The flux variations observed in di↵erent ranges of the XRB spectrum, if periodical
or burst-like, are the crucial measurements to associate an astronomical object with
a rotating binary system and provides indications of the nature and mass of the
compact object and the mechanisms that lead to photon emission. Further details
and more informations about the emission processes inside a XRB can be found in
[Trümper et al. (2008), Israel et al. (2001)].

Transient gamma-ray emission

While the emission of X-rays is a fundamental fact of all XRBs, the emission of
gamma rays, and especially VHE gamma rays, was measured only for a tiny fraction
of all XRBs. Today there is only a handful of binaries detected by one of the IACTs
HESS, MAGIC or VERITAS which cover the spectrum above 100 GeV. Some of
them are XRBs in which accretion feeds relativistic radio jets and powers the non-
thermal emission (i.e., microquasars). In another scenario the wind of a young pulsar
provides the necessary energy instead of accretion. Although the power mechanism
in these systems is di↵erent (accretion vs pulsar wind), all of them are radio, X-ray
and gamma-ray emitters, and belong to the class of HMXBs. The high-mass bright
companion (O or B) star will then deliver the seed photons for IC scattering and
the target nuclei for hadronic interactions [Paredes (2011)]. A visualization of the
di↵erent models of gamma-ray emitting binaries is shown in Fig. 3.5 which is taken
from [Mirabel (2012)]
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A microquasar is a XRB which launches and collimates relativistic jets. The com-
pact object can be a neutron star or a black hole. The important fact is, that there
is no wind streaming away from the compact object and an accretion disk can form.
An accretion disk is supposed to be a necessary ingredient to build a relativistic jet.
Old neutron stars with a weak magnetic field and black holes fulfill that criterion.
Because this phenomena is, on a much smaller scale, similar to that seen in quasars,
these type of XRBs are called microquasar [Mirabel (2010)].
The spectrum of a microquasar is usually very broad. It ranges from radio to X-ray
emission and in some cases they are expected to even emit VHE gamma-rays. The
di↵erent parts of the spectrum have di↵erent spatial origins inside the microquasar.
The donor star, for example, can emit thermal radiation from the infrared to the
ultraviolet while the hot accretion disk produces thermal soft X-rays. It is also
expected that there is a hot plasma surrounding the compact object very closely,
the so-called corona, which is responsible for the hard X-rays and soft gamma rays
generated by the Comptonization of soft disk photons to higher energies [V. Bosch-
Ramon et al. (2006)]. The jet is usually responsible for synchrotron radio emission
but there are also models claiming that the jet can produce the high-energy emission
observed in some of the microquasars, like Cygnus X-1 (VHE detection needs to be
confirmed) and Cygnus X-3 (no detection in VHE, just in HE)[Dubus (2013)]
One of these models is based on a freely expanding magnetized jet, whose internal
energy is dominated by a cold proton plasma extracted from the accretion disk. Due
to velocity variations in the ejected matter internal shocks form all along the jet and
e↵ectively accelerate the electrons inside the jet up to relativistic speeds. Besides
synchrotron radiation and Bremsstrahlung the electrons will also lose energy by IC
scattering of the ambient radiation fields provided by the star, the disk and the
corona [V. Bosch-Ramon et al. (2006)]. Another possible particle interaction is a
proton-proton collision of a relativistic jet proton with a proton from the stellar
wind. This reaction can produce a neutral pion which decays into two gamma-rays
[Romero et al. (2007)]. Both mechanism will deliver photon energies up to the TeV
range.

The other XRB scenario able to produce VHE gamma-rays requires a pulsar wind
streaming away from the compact object and colliding with the stellar wind of the
high-mass companion. Hence, these XRBs build a subclass of HMXBs with a pulsar
as compact object. Currently there are five sources with measured VHE emission
that possibly belong to this class of objects: PSR B1259-63, LS 5039, LS I +61
303, HESS J0632+057 and 1FGL J1018.6-5856 [Dubus (2013)] However, only the
compact object of PSR B1259-63 has been firmly identified as a pulsar, while the
natures of the compact objects in the other systems have not yet been unambigu-
ously determined.
Pulsars are fast rotating young neutron stars with a large magnetic dipole fields
that are inclined with respect to the rotation axis. Due to large electric fields at
the polar caps charged particles will be accelerated and move along the magnetic
field lines. The corotating field lines from the polar caps intersecting with the light
cylinder and are not closed. Charged particles moving along those field lines will
drift away from the pulsar and escape its magnetosphere
When this pulsar wind collides with the strong stellar wind from the massive com-
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Fig. 3.5: Types of possible gamma-ray emitting binaries: (A) Pulsar wind collides with
the disk or envelope of a Be star and generates shock front. Accelerated particles at shock
produce VHE emission by IC scattering of photons from Be star or by proton-proton
interactions (e.g., PSR B1259-63 and LS I +61 303). (B) Microquasars with relativistic
jets that are able to up-scatter photons from accretion disk, corona or companion star by
IC scattering. (C) Same as (A) but pulsar wind collides with stellar wind from massive
star. Up-scattering by IC is most e↵ective when it happens head-on (e.g., LS 5039 and
1FGL J1018.6-5856) [Mirabel (2012)].

panion star shock fronts will form. Depending on the momentum ratio of the two
colliding winds the shock fronts can have di↵erent shapes. If the stellar wind is
dominant, the termination shock of the pulsar wind will warp around the pulsar
forming a comet-like shape that can be measured as elongated radio emission at the
XRBs.
Inside the shocks charged particles are accelerated either by Fermi acceleration, if
the magnetic field is small inside the shock, or by magnetic reconnection (plus addi-
tional ”Fermi-like” acceleration). Both mechanisms lead to a power law distribution
of the relativistic particle energies. The charged particles will lose their energy by
synchrotron radiation and by IC scattering. UV photons inside the photon field
around the massive companion or especially inside the equatorial disk of a Be star
serving as seed photons and get up-scattered to TeV energies [Dubus (2013)].

Both types of gamma-ray emitting XRBs depend on the ambient photon (or proton)
field and so the orientation of the binary with respect to the observer is very crucial
and explains measured variability in the scale of orbital periods. Besides that, it
is also know that the X-ray spectrum of microquasars switches between di↵erent
states (low/hard $ high/soft) on timescales in the order of minutes [Mirabel et al.
(1998)]. If and how VHE gamma-ray emission is correlated to that sudden change
in X-rays can only be measured if IACTs improve their significance on short time
variability and especially their detection of short time flares.
In case of pulsar-wind binaries clumpy winds from the companion star can be a
potential source of non periodic short time variability. Due to the interaction of
clumps with the pulsar-wind, the dominant radiative loss mechanism at the shock
front can vary between synchrotron radiation or IC scattering. Hence, also the
luminosity of the VHE radiation will vary according to the duration of clump-wind
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interaction, which can be in the order of minutes to hours [Bosch-Ramon (2013)].
Investigations of this phenomenon will then also require an improvement of the short
time significance of IACTs.

3.2.2 Active Galactic Nuclei

An Active Galactic Nuclei (AGN) is a compact region around a supermassive black
hole (SMBH) at the centre of a galaxy located at large distances. The average
redshift of an AGN is z = 1 - 3 but even redshifts above 7 have been observed. Due to
their very high luminosity (1045 to 1048 erg/s) over almost all of the electromagnetic
spectrum, they can still be observed at earth which made them ideal objects to probe
the evolution and formation of galaxies in the Universe [Krawczynski et al. (2013)],
[Beckmann et al. (2013)b]. Besides these studies it is as well of great interest to
understand their structure and the mechanisms that enables them to radiate away
such large amounts of energy. Determining the spectrum and the variability of AGN
in the VHE range is one part in the process of improving the theoretical model of
these objects and of the universe in general.

General properties and model

The current believe is that there is an accretion disk of matter spiraling towards
the SMBH (104 � 1010M�) in the center of an AGN. It is supposed that the AGN
and its host galaxy have been formed in a merger of gas-rich galaxies which stimu-
lated the mass accretion process inside the center region of the newly formed galaxy
[Beckmann et al. (2013)b, Hopkins et al. (2006)].
In about 10% of the cases energetic particle beams are emitted along the rotation
axis of the black hole. AGN with these well collimated radio jets, powered by the
accretion flow, belong to the class of so-called radio-loud AGN, while those ones
without jet are called radio-quiet AGN [Sol et al. (2013)]. Separating AGN by their
radio emission is just a first step in the classification of the large variety of obser-
vational characteristics. Today it is assumed that the various AGN sub-classes are
connected to each other and that the di↵erent observed characteristics can be at-
tributed according to the di↵erent viewing angle ✓, the di↵erent power of the central
engine and the fact wether a jet is produced or not (see Fig. 3.6). In the top half of
the circle all sub-classes that belong to the radio-loud AGN can be subdivided into
two categories: Fanarof-Riley Galaxy type 1 - FR1 and Fanarof-Riley Galaxy type 2
- FR2. FR1 are best known for their distorted, not well collimated, jets that appear
disrupted and two-sided. Hence they must emit subsonic jets. FR2, however, are
supposed to house powerful supersonic jets that appear smooth, un-distorted and
as one-sided [Urry et al. (1995)].

Now, the di↵erent parts of the AGN model in Fig. 3.6 and their emission character-
istics are briefly described but the explanation of all di↵erent sub-classes is avoided.
Detailed information on those, and on AGN in general, can be found in textbooks
like [Beckmann et al. (2013)a] and [Rosswog et al. (2007)].
The SMBH with a typical Schwarzschild radius of ⇠ 10�4 pc (for M = 109M�)
in the center of an AGN is surrounded by an optical thick accretion disk (⇠ 0.01
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Fig. 3.6: Schematic representation of the di↵erent observed AGN classes taken from
[Beckmann et al. (2013)a]. It shows their dependance on the viewing angle, on the fact
whether or not the AGN produces a significant jet and on how powerful the central engine
is. In general it is thought that the radio-loud AGN also emit a jet in the opposite
direction, which is just not drawn here, in favor of having a representation of the radio-
quite sub-classes in the bottom half of the same picture as well.

pc) which glows brightly at ultraviolet and perhaps soft X-ray wavelengths due to
viscous or turbulent processes that heat up the disk. Above and below the disk
eventually a corona of hot electron plasma is formed that is able to produce hard X-
ray emission by the Comptonization of photons from accretion disk. Further away,
but still close to the disk and the black hole (at ⇠ 1 pc) one supposes to find the
broad-line region (BLR). It contains rapidly moving gas clouds that produce strong
optical and ultraviolet emission lines, stimulated by photons from the central region.
As the clouds permanently change their direction (with respect to the observer) the
emission lines are broadened by the Doppler e↵ect. A thick dusty torus (inner ra-
dius ⇠ 10 pc), filled with cold gas, obscures the BLR, the corona and the accretion
disk when the AGN is seen from the side. Especially the optical and ultraviolet
radiation gets absorbed. The narrow emission lines, however, are produced in much
slower clouds further away from the central source (⇠ 1000 pc). These narrow-line
regions (NLR) are located beyond the torus which made them the dominant emis-
sion regions for observations at large ✓. In case of radio-loud AGN there will be an
additional relativistic outflow of energetic particles along the poles of the disk or
torus. Depending on the matter distribution of the host galaxy (or galaxy cluster)
those collimated radio-emitting jets (extending to about 106 pc) can interact with
material which leads to shock fronts at and large radio lobes at both ends of the jet.
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VHE Gamma ray emission and variability

When discussing the emission of VHE gamma rays we have to concentrate on radio-
loud AGN with small ✓ between the jet and the line-of-sight. According to the
unified model these AGN belong to the blazar class which can be subdivided into
flat spectrum radio quasars (FSRQ) and BL Lacertae objects (BL Lacs). The sample
of AGN detected at VHE by the middle of 2013 includes 49 published sources, spread
in redshifts from z = 0.0018 to z = 0.536, with 45 blazars and four Fanaro↵-Riley
type 1 radio galaxies [Sol et al. (2013)]. The FR1s are supposed to have ✓-values
larger but still close to those ones of blazars. This why they are called misaligned
BL Lac [Aleksić et al. (2013)].
The most prominent observational features of a blazar are its rapid variability (down
to minute time scale), its luminous, non-thermal, broadband (from radio to TeV
�-rays) continuum emission and the apparent superluminal motions of radio compo-
nents in its jets [Sol et al. (2013)]. The phenomenon of superluminal motion, which
is observed typically at radio wavelengths, occurs when the photon emitting sources
move relativistically and almost directly towards the observer (= small ✓). Hence,
the time interval separating any two events in the observer’s frame is strongly re-
duced which gives the impression that the apparent transversal motion of the sources
is faster than light. All the observational features, mentioned above, indicate that
the non-thermal continuum emission of blazars is produced in .1 light day sized
emission regions, propagating relativistically with velocity ��c along a jet whose di-
rection is very close to our line of sight. The Doppler factor D ⌘ [�(1��� cos ✓)]�1,
which has then to be taken into account, will a↵ect the observed energy flux Fobs, fre-
quency ⌫obs and variability time scale �tobs as can be seen in the following relations
[Boettcher (2012)]:

Fobs = D3Fem (3.23)

⌫obs / D⌫em (3.24)

�tobs / D�1�tem (3.25)

The luminosity will then be boosted by a factor of D4 which explains the domina-
tion of the non-thermal radiation of the jet over the emission of the other parts (e.g.
disk, corona, host galaxy).

A generic spectral energy distribution (SED) of a blazar will have a double-bumped
structure as can be seen in the example Fig. 3.7. The low-energy component typ-
ically ranges from radio to UV/X-rays, while the second, high-energy component
peaks between X-rays and gamma rays.
In the most common models (see [Boettcher (2007)], [Boettcher (2012)] and [Sol

et al. (2013)]), it is expected that the first bump is produced by synchrotron radia-
tion of ultrarelativistic electrons, injected instantaneously into a spherical emitting
volume (a plasma blob) which moves along the jet at relativistic speeds. The mech-
anism that ejects the plasma and the process that accelerates the particles inside
the blob are both still under investigation but it is assumed that shock acceleration
plays an important role. This is why in the simplest models, the underlying lepton
(electrons and/or positrons) distribution is ad-hoc pre-specified, either as a single
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Fig. 3.7: Spectral energy distribution of Mrk 421 during multi-wavelength campaigns
with the participating instruments indicated in the figure [Abdo et al. (2011), Fig.8]. On
can clearly see the two-bump structure, that is typical for blazars.

or broken power-law with a low- and high-energy cut-o↵.
The second bump of the SED can be described within these models in two di↵erent
ways. In leptonic models the high-energy component arises from inverse Compton
scattering of the soft photons o↵ the same ultrarelativistic electrons which are pro-
ducing the synchrotron emission. Both, the synchrotron photons produced within
the jet ( Synchrotron Self-Compton (SSC) model) and the external photons (Exter-
nal Compton (EC) model ) can serve as target photons for Compton scattering. In
both cases, it is the same particle population within the jet that is responsible for the
non-thermal emission. Therefore, a correlation between X-ray and VHE gamma-ray
variability would support a SSC scenario. On the other hand, one-zone models are
not favored if a hard spectra is observed in VHE because of the model limitation
due to the Klein-Nishina regime.
In hadronic models the gamma-ray emission in the second bump is explained by syn-
chrotron emission of charged particles, produced in pair cascades that are initiated
by the interaction of ultra-relativistic protons with the matter and photons inside
the jet. Also the direct proton-synchrotron emission has to be taken into account
as potential gamma ray source. In those scenarios large magnetic fields of several
tens of Gauss (much higher than in leptonic models) are required inside the mov-
ing plasma blob to accelerate the protons to the necessary ultra-relativistic energies
(Ep,max > 1019 eV).
Those two models (leptonic and hadronic) just represent the two extreme cases. In
a realistic model one has to take into account contributions from both e↵ects. For
further details and information about those models and even more complex ones
please read [Boettcher (2012)].
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It is well known that blazars are far from being steady sources. They exhibit strong
flares in all frequency bands. Flux variability of blazars has been detected on all
time scales from years, months, and days. Most rapid variability in the VHE regime
has been observed at PKS 1222+216 [Tavecchio et al. (2011)], at BL Lac [Arlen
et al. (2013)], Mrk421 [Galante (2011)], at Mrk 501 [Albert et al. (2007)] and at
PKS 2155-304 [Aharonian (2007)], which exhibit flux variations down to timescales
of several minutes.
Further investigations of PKS 2155-304 by [Biteau et al. (2011)] show that the power
spectral density (PSD) of the outburst is well described by a power law P⌫ / ⌫�2

up to a maximum frequency ⌫max, above which the spectrum is dominated by the
measurement uncertainty power. Under the assumption that the PSD is a continu-
ous power law, even for frequencies above ⌫max, an inverse Fourier transformation of
this power law extension was calculated and used in combination with the existing
light curve to figure out which substructures in the temporal space (< 1 min scale)
had been missed due to the limited sensitivity of the detector.
Such short flux variations pose severe problems to those simple models explained
above. For example, the size of the causally connected emission region (blob) would
have to be much smaller than expected to induce such short time variability. Short
rise/decay times of a flux change constrain the size of its possible origin by causality
arguments: Rblob . ctriseD/(1 + z). The measured variability time scales are also
much shorter than the cooling times of the relativistic particles in those models,
especially in the hadronic case. Due to those recent observations of minute scale
variability in VHE blazars, it is necessary to extend and improve the simple models
that have been working so far [Boettcher (2012), Sol et al. (2013)]. Possible ex-
tensions to the existing models could be small subregions within a jet (jets-in-jet)
[Giannios et al. (2009)], stratified structures (compact region moving faster than
the rest of the jet) [Boutelier et al. (2008)], the recollimation of the jet [Bromberg
et al. (2009)] or its deceleration [Levinson (2007)].

By measuring the exact duration of a VHE flare and the delay time with respect to
a potential correlated flare in the X-ray regime, one is able to constrain the set of
models (and their parameter space) that are currently under development. In case
of low VHE rates it is di�cult to measure flux changes in the order of few minutes
with IACTs. Particularly the exact rise and decay times of a short flare would be
very interesting. It is therefore necessary to improve current statistical methods
used in in TeV astronomy.

3.2.3 Gamma Ray Bursts

Gamma-Ray Bursts (GRBs) are the most luminous sources in the Universe, apart
from the Big Bang, and their angular distribution on the sky is completely isotropic.
Detecting their short and intense bursts of non-thermal radiation, emitted at cos-
mological distances, allows us to probe the evolution of stars in the early Universe at
high redshift and to test several aspects of the latest theoretical models in cosmology.
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Generic characteristics and origin

GRBs are able to release 1052 - 1054 erg of isotropic-equivalent energy during a brief
period of 0.01-1000 s [Inoue et al. (2013)]. Over this relatively short timescale
they emit a spectrum at gamma-ray energies (keV - MeV) that is fit well by the
so-called Band function [Band et al. (1993)]. This function can be described by two
power-laws smoothly joined by an exponential at an energy of Ep ⇡ 0.1 - 1 MeV.
Ep represents the peak energy, because most energy is emitted in this part of the
spectrum (see Fig. 3.8,b).

N(E) =

8
<

:
N0

⇣
E

Eref

⌘↵
e�E/E0

N1

⇣
E

Eref

⌘�
if: (↵� �)E0 > E

if: (↵� �)E0 6 E
(3.26)

with: E0 = Ep/(↵+ 2).

These erratic, gamma-ray (or hard X-ray) prompt emission phase is accompanied
by afterglows that span the radio to X-ray bands and gradually decay over hours to
days or more while they are softening from x-rays to optical to radio. A light curve
of a typical GRB with its prompt and afterglow phase can be seen in Fig. 3.8,a.
Since 1991 there exist satellite observatories, covering the energy range from keV to
GeV, dedicated to search for GRBs due to their wide field of view. Today the number
of detected GRBs is above 5000 [Bloom (2011)]. The detection rate of GRBs with
the current observatories like Fermi (gamma ray regime; low angular resolution) and
Swift (X-ray regime; high angular resolution; follows GRB position) is ⇠ 160/year
and ⇠ 90/year respectively [von Kienlin et al. (2014), Sakamoto et al. (2011)]. A
more detailed description of both instruments is given in subsection 6.3.1. Follow
up observations of GRBs by optical telescopes, triggered by satellite experiments

Fig. 3.8: a) Canonical X-ray light curve showing the temporal evolution of the flux after
the GRB trigger time. The afterglow phase starts in this example at ⇠100 seconds. There
are many variations on this general picture. Especially the flares don’t have to occur in
every GRB. Adapted from [Bloom (2011)].
b) Example of a GRB’s high energy spectrum shown both as photon counts NE and in
E2NE units, where E is the energy of detected photons. The quantity E2NE tells us the
amount of energy emitted in certain energy band. Adapted from [Briggs et al. (1999)]
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with high angular resolutions, made it possible to measure a redshift for some of the
GRBs. The mean value of the redshift distribution is around z = 2.5 (for all Swift
detections) [Sakamoto et al. (2011)] but there are also extreme GRBs detected with
a redshift of z = 9.4 [Cucchiara et al. (2011)].
Measurements of the duration T90 of the prompt emission also revealed that one
can divide GRBs into two groups: short (T90 < 2s) and long (T90 > 2s) GRBs. T90

is defined as the time over which the central 90% of the counts (between 10 and
500 keV) above background from a GRB are detected. In general the properties of
GRBs belonging to one group are systematically di↵erent to those from GRBs of
the other group which indicates two di↵erent formation scenarios.
Due to the energies and the short durations a natural candidate for GRB progenitors
are either corecollaps supernovae of a Wolf-Rayet star (long GRBs) or the merger of
two compact objects, like neutron stars or a black holes, trapped in a binary system
(short GRBs). In both scenarios, it is expected that a black hole forms, which
is surrounded by a temporary debris torus whose accretion can provide a sudden
release of gravitational energy, su�cient to power a burst. It is supposed that a
small fraction of this energy is converted into electromagnetic radiation, through
the dissipation of the kinetic energy of a collimated relativistic outflow, a fireball
with bulk Lorentz factors of � & 300, expanding out from the central black hole
[Ghisellini (2010), Meszaros (2006), Meszaros (2013)]. The fireball model and its
emission mechanisms will be described in the following section.

GRB standard model - ”Fireball model”

The development of a canonical GRB model started with the advent of the com-
pactness problem. It arises due to the necessity of combining the three main charac-
teristics of a GRB: strong emission of high energy photons , short-time variability
and non-thermal spectrum. The short variability timescales imply that the emission
region must be very small due to causality: D 6 c · �t. Taking into account the
very high luminosity emitted from this compact region and the fact that the energy
of the emitted photons exceeds the pair production threshold, it should lead to an
opaque plasma from which no energetic non-thermal radiation is expected [Piran
(1999), Vedrenne et al. (2009)]. As such a scenario contradicts the observations,
a relativistic expansion at high Lorentz factors � along the line-of-sight of an ob-
server had been added to the model. The relativistic Doppler e↵ect and the Lorentz
transformation will then lead to a much larger (less denser) emission region and a
lower photon energy at the plasma than expected from measurements. So in the
comoving frame the plasma is not optical thick and photons can be emitted. The
optical depth of the plasma is in fact �6 times smaller than in the observer frame
[Vedrenne et al. (2009), Gomboc (2012)].

A necessary condition for a relativistic expansion is a high energy/mass ratio (⌘ =
E0/M0c

2
� 1) at the central object where M0 represents the baryon load. The

energy E0, which is emitted by the central engine, creates a very hot plasma con-
sisting of e±, photons and baryons inside a compact volume with r = R0. Since this
so-called fireball is initially optically thick, it undergoes adiabatic expansion and
cools.
At the beginning of the expansion the Lorentz factor of each particle is �0 ⇠ ⌘ while
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Fig. 3.9: Schematic behavior of the bulk Lorentz factor � together with the locations
of the of the saturation radius rs, photospheric radius rph, internal shock (or magnetic
dissipation) radius ris and external shock res. The photosphere produces thermal �-rays,
the internal shock/dissipation region produces the non-thermal �-rays and the external
shock region produces the afterglow. Adapted from [Vedrenne et al. (2009)]

the direction of each velocity vector is completely isotropic. Therefore the bulk
Lorentz factor of the fireball is � ⇠ 1. During the adiabatic expansion the velocity
vectors are more and more aligned with the radial vector the further the particles
have moved away from their initial position. Hence, they form an expanding shell
whose radial bulk Lorenz factor increases proportional to the radius (� / r) while
the comoving Lorentz factors �0 decrease anti-proportional. The bulk acceleration
stops at a radius Rs of⇠ 107 - 108 mwhen the Lorentz factor has saturated (�max ⇠ ⌘
and �0 ⇠ 1). Beyond that radius the shell coasts with a constant Lorentz factor until
it sweeps up enough interstellar medium and begins to decelerate.

During the constant coasting phase the ejected plasma keeps on cooling until its
optical depth becomes 1. At this radius Rph (⇠ 109 - 1010 m) the emission of ther-
mal photons is expected. If the initial central engine produces a fast moving ejecta
(particle wind), rather than an explosive fireball, it is supposed that time-varying
outflow leads to several small shells with di↵erent �. Every time a fast one overtakes
a slower shell transient collisionless shocks will appear which are able to produce
the erratic non-thermal prompt emission. Therefore the measured variability during
the prompt phase reflects the activity of the central engine. The emission has to
happen after the fireball has become optical thin because high-energy photons are
observed. A typical region for those internal shocks begins at a radius Ris of ⇠ 1012

- 1013 m.
The end of the GRB evolution marks the appearance of the slowly decaying ( up to
days), smooth afterglow phase. The main fraction of the injected energy E0 is lost
during this process. It is caused by the deceleration of the ejecta when it sweeps
up enough of the surrounding material, which usually happens at Res ⇠ 1014 - 1015

m. In general two external shocks form: the forward shock and the revers shock
which propagates back into the relativistic outflow. Both shocks produce electro-
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magnetic radiation at lower frequencies compared to the prompt emission. While
the relativistic forward shock is still energetic enough to emit X-ray photons the
much weaker reverse shock produces typically optical photons. In Fig. 3.9 one can
see an example of a typical fireball model with its di↵erent emission regions and
the corresponding bulk Lorentz factors. More detailed information can be found in
[Vedrenne et al. (2009), Piran (1999), Meszaros (2006)]

As this model was first intended to describe a spherical expansion, one can also
use it, if the outflow is strongly collimated. In such a scenario, the emission is not
isotropic. Hence, the initial energy, required to produce a certain luminosity, is much
smaller than the one predicted by a model with isotropic emission. In some GRBs,
the observed luminosity is so high that its initial energy would exceed the binding
energy of the sun, if isotropic emission is assumed. Such a high energy is di�cult
to describe within models that suppose stellar mass progenitors. Therefore a jet
scenario is favored. It would also increase the number of existing GRBs because
all of them whose relativistic ejecta is not moving towards the earth can not be
observed. An explanation for the emergence of collimated outflow could be a the
accretion of material with angular momentum. Only matter along the rotation axis
are not held back from immediate infall, which leads to a matter free funnel along
which a subsequent fireball ejecta can expand [Vedrenne et al. (2009), Gomboc
(2012)].

High and very high energy emission

The fireball model describes several occasions where non-thermal radiation is pro-
duced. The internal and external shocks accelerate electrons and protons to relativis-
tic speeds which cool under the emission of synchrotron radiation and/or by inverse
Compton scattering. Other possible acceleration mechanisms, besides the shocks,
are magnetic reconnection and hydromagnetic turbulence [Rees et al. (1994)].
The non-thermal emission produced by such processes can contain high energetic
photons detectable by Fermi/LAT. The LAT (Large Area Telescope) is an imag-
ing high-energy gamma-ray telescope and the principal scientific instrument on the
Fermi spacecraft. It covers the energy range from about 20 MeV to more than 300
GeV [Atwood et al. (2009)].

The measured GeV prompt emission can be described by a simple extrapolation of
the Band function towards higher energies. In some cases, however, an additional
hard power-law component is necessary to fit the data (see Fig. 3.10). It has also
been measured that for some GRBs the GeV emission during the prompt phase is
delayed (up to a few seconds) and longer lasting than the keV to MeV emission. In
the right example of Fig. 3.10 one can see that the high-energy power-law component
appears several seconds after the GRB trigger. Further it is visible that during high
flux phase an additional exponential cut has to be introduced to describe the GeV
data [Meszaros (2013)].
While this is an example of VHE emission during the prompt phase there exist also
GRBs with GeV photons detected minutes to hours after the trigger during the
afterglow phase [Fan et al. (2013)].
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Fig. 3.10: a) The joint Fermi-GBM-LAT unfolded ⌫F⌫ spectrum of GRB090902B show-
ing the extra power-law component which is dominant at both high and low energies.
Adapted from [Abdo et al. (2009)].
b) The integrated (top) and time-resolved (bottom) spectra showing the evolution of
the power-law component during the prompt phase of the GRB 090926A. Adapted from
[Ackermann et al. (2011)].

Depending on the spectral characteristics and the temporal appearance of those
high-energy (HE) emissions di↵erent models had been developed. In general it is
assumed that inverse Compton (IC) scattering is responsible for the HE emission.
The seed photons could come from the photosphere (Rph) or from the synchrotron
emission at the shocks. The IC scattering of the photons can happen at the external
or the internal shocks. For the long lasting HE emission in general IC scattering
at the external shocks is favored. Rapid and large amplitude variability, however,
would favor internal shocks or photospheric emission.
Besides the leptonic models there are also HE emission mechanisms possible that
involve hadrons. This includes proton synchrotron emission or p� and pn colli-
sions which lead to pions, including ⇡0, resulting in ultra-high energetic photons
which cascade down to the GeV range by IC emission of secondary e± [Inoue et al.
(2013), Meszaros (2006)].
A spectral cuto↵ could be the result of a huge optical depth to pair production
(�� ! e�e+). But also a cooling break, a maximum energy cuto↵ of synchrotron
emission or a Klein-Nishina break of inverse Compton emission could be the reason
[Inoue et al. (2013)].
To describe the delayed onset of the GeV emission mentioned above two- or mul-
tiple zone models are favored, which typically involve an inner softer source whose
photons are up-scattered by electrons in a di↵erent region further out [Meszaros
(2013)].
So depending on the external medium and the origin of the central engine activity
a large variety of spectral shapes and lightcurves are possible.

The highest photon energy from a GRB until now was measured at GRB 130427A
(redshift = 0.34). Besides this energetic photon at 94 GeV in total 19 photons above
5 GeV have been measured by the Fermi/LAT [Fan et al. (2013)]. Extrapolating the
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spectra of GRBs like this, leads to the expectation of numerous photons in the VHE
range (up to several TeV). This depends of course on the model of the extragalactic
background light (EBL) and the redshift of the GRB as VHE photons coming from
cosmological distances are attenuated by pair production with EBL photons. Only
if the number of VHE photons is high enough IACTs are able to detect the GRB.
Unfortunately such a detection is still lacking. Reasons are the duty cycle, the small
field of view and the slow slewing speed of IACTs. After a trigger signal is received
from a satellite experiment that detected the GRB, it can take up to several min-
utes until the telescopes accurately pointing at the source. Of course this is only
true for trigger signals arriving at dark, cloudless nights. During the day, or during
bright moonlight no sensitive observations are possible with IACTs and one has to
wait until the conditions are acceptable to start the GRB observation. However,
if the VHE emission is produced in the afterglow, follow up observations are still
reasonable after several hours [Inoue et al. (2013)].

Possible observation scenarios are the detection of VHE emission during the after-
glow or during the prompt phase of a long GRB. The second case will be quite
di�cult as one has to reduce the duration between the GRB trigger and the start
of the IACT observation to a minimum of ⇠ 10 - 100 sec. It is not expected to
detect more than one GRB per year during its prompt phase, even with the new
generation of IACT instruments.
However, there are many physical aspects that can be tested by GRB observations
in the VHE regime. For example, one is able to constrain the di↵erent parameters
used in the GRB models, especially the limitation of the value for the bulk Lorentz
factor is a very crucial point. Further one can test the di↵erent EBL models if the
VHE photons come from a distant GRB (z & 1). GRBs at cosmological distances
are also ideal sources to test the Lorentz invariance violation. As this theory pre-
dicts an energy dependance of the speed of light, an observational delay between
the di↵erent energy regimes of the GRB emission could be a hint that such a theory
is true. Obviously on has to exclude any internal delays due to the emission mech-
anisms inside a GRB which will be the most di�cult part [Inoue et al. (2013)].
Because the durations of GRB VHE emissions are very short, when comparing with
flares of Blazars or other VHE emitting sources, it was not possible to make a sig-
nificant detection with IACTs. This is due to the low numbers of signal photons
which lead to a small sigma when the standard Li&Ma method is applied. In this
work we will test di↵erent statistical methods which are sensitive to variability. Our
approach is the detection of a GRB due to its fast variability and not due to the
number of the observed photons. A positive side e↵ect of one of these methods is the
determination of the rise and fall time of the VHE flare from a GRB which provides
valuable information of the temporal evolution of the VHE emission and helps to
constrain the existing models.

Summary

As it was shown in the previous sections, there exist several source types (e.g. XRBs,
GRBs and AGN) for which the occurrences of very short (⇠ minutes) flux variations
in the VHE regime are expected or, at least, theoretically possible. The purpose of
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this thesis is the search for such abrupt flux changes in the VHE data of AGN and
GRBs, taken by VERITAS. Therefore it is necessary to improve the current analysis
procedure by applying some advanced statistical methods, that are optimized for
the detection of significant variations in the event rate. A detailed description of
these methods and their application to Monte-Carlo simulations and VERITAS data
are the topics of the following chapters.
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Chapter 4

Statistical methods to detect
transient gamma-ray sources

In this chapter I discuss advanced statistical methods regarding the evaluation of
the probability that a detected �-ray signal deviates from background expectations.
Furthermore I compare them with the standard methods, currently used by VERI-
TAS, which are also explained in the following sections. It is necessary to mention
that the main feature of the advanced methods is the fact that the time is used as
an additional input parameter.

4.1 Significance calculation in �-ray experiments

Unfortunately even after gamma hadron separation the number of events in our sig-
nal region is still interspersed by so called gamma-like background events. Getting
a significant detection of a �-ray source observed with an IACT is a statistical e↵ort
due to the limited number of events. Here I describe three di↵erent formulas which
are used in current analysis software of IACTs to calculate the significance S of an
excess. We will see that only one of them provides a good approximation to the
expected normal distribution of S even for small numbers.

Each of the three di↵erent calculation methods requires the same input parameters,
which are the number of events in the ON region, the number of events in the OFF
region and the ↵ parameter. As we have seen in subsection 2.4.4 the ON region
corresponds to our estimated signal region while the OFF region is an area in the
sky where we expect just background events. The quantity ↵ is the ratio of the
on-source exposure and the o↵-source exposure which depends on the the chosen
background estimation method (see subsection 2.4.4).
The estimated number of �-ray like background events contained within the mea-
sured on-source counts are:

N̂B = ↵No↵ .

Then the observed signal photons can be estimated as follows [Li et al. (1983)]:

N̂S = Non � N̂B = Non � ↵No↵ .
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4.1.1 Standard deviation of signal

Let us start with a simple assumption of two individual Poisson processes when
calculating the standard deviation � of NS. Because Non and No↵ are measured
independently one can just add their variances and does not have to take into account
the covariance:

�2(NS) = �2(Non) + �2(↵No↵) = �2(Non) + ↵2�2(No↵) (4.1)

! �(NS) =
p

Non + ↵2No↵ with: �2(Non/o↵) = Non/o↵ (4.2)

This last condition is valid under the assumption that the on- and o↵-source counts
follow a Poisson distribution with a true mean value �on/o↵ ( = �2

on/o↵) that is equal
to the measured values Non/o↵ .
Now, one can calculate the significance S as the ratio between NS and �(NS):

S =
NS

�(NS)
=

Non � ↵No↵
p

Non + ↵2No↵

(4.3)

In the paper by Li and Ma [Li et al. (1983)], where an extensive Monte Carlo study
was made to compare these di↵erent methods, one can see that this formula provides
a good estimation for S but only if ↵ ⇡ 1.

To improve the evaluation of S it would be better to assume that there is just back-
ground in the data so that the measured Non doesn’t include any signal events. Esti-
mating the probability that any observed excess is just compatible with background
fluctuations should be the goal of a significance calculation. Under this assumption
�on will be hNBi and �o↵ will be hNBi/↵. Equ. (4.1) can then be written as:

�2(NS) = �2(Non) + ↵2�2(No↵) = (1 + ↵)hNBi (4.4)

! �(NS) =
p

(1 + ↵)hNBi =
p
↵(Non +No↵) (4.5)

The last equation is true if one estimates hNBi not only by using No↵ but also by
using Non, taking into account the di↵erent exposures: hNBi = ↵(Non+No↵)/(1+↵)
Finally one ends up with the following equation for S:

S =
NS

�(NS)
=

Non � ↵No↵p
↵(Non +No↵)

(4.6)

For Non > 10 and No↵ > 10 counts NS is approximately normally distributed around
0, under the assumption of no signal. This leads to a normal distributed variable S
whit a variance of one and a mean value of zero (see LiMa 1983 [Li et al. (1983)]).

4.1.2 Likelihood ratio method

Another method to estimate the significance is the usage of a hypothesis test. The
idea is to compare the date (Non, No↵) with two di↵erent hypothesis to figure out
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which one fits better the data. These two hypothesis are usually described as the
same likelihood function but with two di↵erent sets of parameters. In the present
problem those parameters are the expectation values of the signal and the back-
ground counts: hNSi and hNBi. Assuming no signal but just background data leads
to the so called ”null hypothesis” with the parameter values hNSi0 = 0 and hNBiC

is equal to a conditional maximum likelihood estimate, which is a value that leads
to the highest possible probability of fitting the data under the condition of no
signal counts: hNBiC = ↵(Non + No↵)/(1 + ↵). One can now calculate the ratio
between the likelihood of the null hypothesis and the maximized likelihood, whose
parameters are not restricted by any conditions: hNSimax = NS = Non � ↵No↵ and
hNBimax = NB = ↵No↵ (see [Li et al. (1983)] for further details).

� =
L(N |µ0)

L(N |µmax)
=

P
⇥
Non, No↵ |hNSi0, hNBiC

⇤

P
⇥
Non, No↵ |hNSimax, hNBimax

⇤

=
P
⇥
Non|hNoni = hNSi0 + hNBiC

⇤
· P

⇥
No↵ |hNo↵i = hNBiC/↵

⇤

P
⇥
Non|hNoni = hNSimax + hNBimax

⇤
· P

⇥
No↵ |hNo↵i = hNBimax/↵

⇤

=
P
⇥
Non|hNoni =

↵
1+↵(Non +No↵)

⇤
· P

⇥
No↵ |hNo↵i =

1
1+↵(Non +No↵)

⇤

P
⇥
Non|hNoni = Non

⇤
· P

⇥
No↵ |hNo↵i = No↵

⇤

(4.7)

Under the assumption of a Poisson distribution, P (k|µ) = µk

k!
e�µ, the result of this

maximum likelihood ratio is:

� =
L(N |µ0)

L(N |µmax)
=


↵

1 + ↵

✓
Non +No↵

Non

◆�Non


1

1 + ↵

✓
Non +No↵

No↵

◆�No↵

(4.8)

According to Wilk’s theorem (see [Wilks (1962)]) the variable �2 ln� follows a �2

distribution with r degrees of freedom, if the null hypothesis is true, whereas r
corresponds to the number of parameters that are fixed during the null hypothesis.
In the case described here r = 1 because one fixes only one parameter: hNSi = 0.
The behavior of �2 ln� is equal to that of a squared normal variable. Therefore
one can assume that the value

p

�2 ln� follows a standard normal distribution and
that this value is a direct measurement for the significance S.

S =
p

�2 ln� =

=
p

2

⇢
Non ln


1 + ↵

↵

✓
Non

Non +No↵

◆�
+No↵ ln


(1 + ↵)

✓
No↵

Non +No↵

◆��1/2

(4.9)

It is clear from the previous calculations that � cannot be negative. Hence, either an
excess (NS > 0) or a lack of signal (NS < 0) is represented with a positiv value of S.
For visualization reasons it is therefore useful to multiply S with �1 if Non < ↵No↵

and get negative significance values, as well. In the aforementioned Monte Carlo
studies of Li and Ma it was shown that the last equation (Equ. (4.9)) provides the
best approximation to a Gaussian probability distribution, which makes it easy to
translate the significance value directly into a probability.

In the sections above I have shown several methods to calculate the significance of an
excess under the assumption that there are just background events in the data. On
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the basis of the outcome of these methods the decision is made whether to declare
a detection of a signal or not. The usual convention is, that a signal is detected,
if one measures a significance greater than five (S > 5). In this case one wants to
present the value of NS together with its error �(NS). The calculation of the error
was already described in Equ. (4.2).

4.2 Event times in significance calculation

In the methods presented in the previous sections the number of photons in the signal
region (ON region) and the number of background photons, measured in dedicated
sidebands (OFF region), are the necessary input parameters while the measured
times of each single gamma-like event are completely ignored. In this section I will
explain methods dedicated to detect variability during a period of measured single
event times.

4.2.1 Motivation

The detection of gamma rays with a Cherenkov telescope array is a time consuming
process due to the low rate of high-energetic photons and the large background frac-
tion of gamma-like air showers. Depending on the source it can take up to several
hours to accumulate enough statistics for a significant deviation from background.
For the calculation of the significance we use the equations that had been explained
in the previous sections (see Equ. 4.9). In case of a short flare these methods won’t
work very well if the analyzed data period is much longer than the time scale of
the flare. Extending the duration of data taking will just increase the number of
OFF events which will lead to a less pronounced signal excess. If the exact time of
the flare is known a simple solution is to analyze just this specific time period. But
what happens if one does not know the exact timing of the flare? One could split
the data into arbitrary blocks, hoping to catch the flare exactly with one of these
blocks, and analyze each of them separately. This procedure has the disadvantage
of introducing trials if one changes the splitting several times in order to find the
best block for the flare that leads to the largest deviation from background.
In this section I describe some existing statistical methods that take these trials into
account. They improve the detection of short signals and help to discover variability
in a data set. Instead of comparing the numbers of events from di↵erent regions in
the skymap these methods make use of the time information of each single event.
They are therefore not restricted to specific ON and OFF regions and work in the
whole field-of-view.
Now, I concentrate on the description of the two di↵erent methods, which I applied
to data sets with minute-scale flares measured by the VERITAS Cherenkov tele-
scope system. The first was invented by J. Prahl [Prahl (1999)] and has already
been used to measure variability in data from the HEGRA telescope system [Aha-
ronian et al. (2004)] while the second, which was invented by J. D. Scargle [Scargle
(1998), Scargle et al. (2013)], has never been applied to data from IACTs but to
data from gamma-ray satellite experiments like Fermi instead.
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4.2.2 The exp-test

In this section I explain in detail how the method of Prahl [Prahl (1999)], the so-
called exp-test, is derived. I also highlight the advantages of this method compared
to other variability analysis procedures. The focus of this thesis, is the analysis of
temporal sequences of measured gamma-ray photons. But the method is not re-
stricted to the time domain it can be used on spatial or frequency data as well.
Assuming an uniform temporal acceptance of the detector, the sequence of recon-
structed events follows Poisson statistics if there is no variability in the data. This
fact applies to both background events and events from a steady source. Therefore
this case defines the null hypothesis in the framework of the described test on vari-
ability.

Distribution of time di↵erences

One calls a monotone sequence of event times a Poisson process, if the numbers n of
independent events per equally sized time interval are Poisson distributed with the
same expectation value � for all of these intervals. It is clear that � is proportional
to the size of the interval �t. Together with a constant factor 1/C, which can be in-
terpreted as the event rate, � can be write as: � = �t/C. However, for the exp-test
it is not the number of events in an interval with fixed size that is important but
the time di↵erence between two consecutive events. To get from poisson distributed
events inside an interval a distribution of time di↵erences, one has to do the following:

P�(n) =
�n

n!
e�� =

(�t/C)n

n!
e��t/C = P�t/C(n) (4.10)

Fixing the value of n to zero one will get the probability that an interval with �t
contains no events. Now, one can calculate the joint probability that there is no
event in the interval �t and one event in the very short interval d�t right after the
first interval. This is exactly the probability of finding the time di↵erence x inside
a small range [�t,�t + d�t]. Due to the fact that the events are independent the
joint probability is just a multiplication of two Poisson probabilities:

P [�t < x 6 �t+ d�t] = Pjoint[n�t = 0, nd�t = 1]

= P�t/C(0) · Pd�t/C(1) ⇡ P�t/C(0) ·
�
1� Pd�t/C(0)

�

= P�t/C(0)� P(�t+d�t)/C(0)

(4.11)

The last step is only valid for the Poisson distribution at n=0 due to the fact that
one has to multiply two single exponential functions without any pre-factors.
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The remaining step will be the calculation of the probability density function (pdf)
fC(�t) of �t:

fC(�t) d�t = P [�t < x 6 �t+ d�t] (4.12)

=) fC(�t) =
P�t/C(0)� P(�t+d�t)/C(0)

d�t
= �

dP�t/C(0)

d�t

= �

d
�
e��t/C

�

d�t
=

1

C
· e��t/C (4.13)

This is an exponential distribution of �t with the true mean value C (= �t) and
with an integral equal to one over [0, 1].

If a random sequence of event times follows a Poisson distribution with a constant
rate of 1/C⇤, then the distribution of the discrete time intervals between consecutive
events {�Ti}i=1...N is described by fC⇤(�t). Here, the true mean value C got re-
placed by the actually obtained mean value C⇤ = �T . The pdf F (�t) of a random
probe with discrete event times will look like this:

F (�t) :=
1

N

NX

i=0

�(�t��Ti) (4.14)

Comparison of the discrete event distribution with the ideal distribution

The goal is now to compare this distribution with the ideal distribution fC⇤(�t).
Like the well known distribution tests from Kolmogorov and Smirnov, Prahl devel-
oped its own test which is especially sensitive to excesses of the �Ti and takes into
account the constant mean value C⇤. This way it will only depend on variability in
the data and not on the magnitude of its overall rate.
Prahl starts with the comparison of the 0. and 1. moment of fC⇤(�t) and F (�t):

Z 1

0

fC⇤(�t) d�t =

Z 1

0

F (�t) d�t = 1 (4.15)

Z 1

0

�t · fC⇤(�t) d�t =

Z 1

0

�t · F (�t) d�t = C⇤ (4.16)

It follows that:
Z 1

0

✓
1�

�t

C⇤

◆
· fC⇤(�t) d�t =

Z 1

0

✓
1�

�t

C⇤

◆
· F (�t) d�t = 0 (4.17)

One can define a new function H(x)

H(x) :=

Z x

0

✓
1�

�t

C⇤

◆
· fC⇤(�t) d�t (4.18)
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1/C*

Δt
C*

Δt = x‘

H(x‘)

H(x)

x

1/e

(1 - Δt/C*)·fC*(Δt)

Fig. 4.1: A sketch of the theoretical distribution fC⇤(�t) multiplied by
1��t/C⇤ (grey) and the function H(x) (blue) which is the corresponding
integral. The orange area is equal to the value of H(x0). The usage of
F (�t) instead of fC⇤(�t) would lead to a curve with discrete steps and
a maximum that is di↵erent from 1/e.

which has the following properties (see Fig. 4.1):

- H(0) = H(1) = 0

- H(C⇤) = 1/e, this is the global maximum of H(x)

If one replaces fC⇤(�t) by the discrete distribution F (�t) of the random probe all
the properties still hold with the exception of a global maximum which is not exactly
1/e but varies around a mean value µ near 1/e. The maximum can be calculated
like this:

M(F ) :=

C⇤Z

0

✓
1�

�t

C⇤

◆
· F (�t) d�t =

1

N

X

i2 IC⇤

✓
1�

�Ti

C⇤

◆
=

1

N

X

i2 IC⇤

ai,C⇤ (4.19)

with: IC⇤ := { i | �Ti 6 C⇤
} and ai,C⇤ =

✓
1�

�Ti

C⇤

◆

The reason for the deviation of µ from 1/e is the di↵erence between C⇤, which
will be used in the equations, and the true, but unknown, mean value C. C⇤ varies
around C with a spread of ��t/

p

N . This leads to a slightly lower maximum than
1/e. Hence the mean value µ of many di↵erent random probes is also smaller than
1/e.

73



4.2. EVENT TIMES IN SIGNIFICANCE CALCULATION

One can see that the global maximum M(F ) is a suitable value for testing the
random distribution against the ideal exponential distribution. Due to the discrete
nature of the F (�t) the integral in Equ. (4.19) transforms into a summation. On
the basis of two extreme examples I will show the range of possible solutions for
M(F ):

1. distribution with a untypical regular structure:
�t = const. (like a heartbeat)
FH(�t) := �(�t� C⇤) ) M(FH) = 0
if all �Ti are equal to C⇤ the summation in Equ. (4.19) will be 0

2. distribution of events appearing almost all at the same time:
�t ⇡ 0 for almost all (N � 1) events (like a needle peak)

FN(�t) := lim
N!1

⇣
(1� 1

N
) · �(�t) + 1

N
· �(�t�N · C⇤)

⌘

almost all �Ti are zero and smaller than C⇤

) M(FN) =
1
N

P
1 = 1

N
(N � 1) ���!

N!1
1

Now it is clear that M(F ) can only attain values between 0 and 1. If the distribution
is too regular M(F ) will be lower than µ (⇡ 1/e) but not lower than 0. If the
distribution indicates an untypical variability compared to a Poisson process M(F )
will be higher than µ but still lower than 1.

Result of exp-test and the normal distribution

To use M(F ) as a statistical test for variability it is necessary to know its distri-
bution function under the zero hypothesis. This task is not trivial and would be
considerably expensive if one would try to find an analytically exact solution. There-
fore Prahl’s approach was semi-analytical.
One can see that M(F ) is dimensionless and that C⇤ only scales the time. So the
distribution will not depend on C⇤ but on the number of time di↵erences N instead.
Therefore M(F ) will be called MN from now on. Regarding equation 4.19 it is clear
that MN is the sum of ai,C⇤ divided by N . The probability distribution of a sum is
usually the convolution of the probabilities of all the variables ai,C⇤ that have been
added together. In such a case the variances (= �2) of each variable are summed.
Because the variance of ai,C⇤ has the same value for all i, the overall variance is
just proportional to IC⇤ , which is proportional to N (for large N). Taking also into
account the division by N mentioned in Equ. (4.19), the variance, which is related
to M2, additionally scales by 1/N2. So at the end the scale factor will be asymp-
totically N/N2 = 1/N . Hence, for the standard deviation � / 1/

p

N is valid
The convolution of probabilities is also the reason for the expectation value µ

of MN to tend towards the expectation value of the positive ai,C⇤ . As the value of
ai,C⇤ depends on�Ti it is possible to replace�t in Equ. (4.13) by a term (1�aC⇤)C⇤.
Hence, the resulting equation represents the pdf of a, which can be used to calculate
its expectation value between 0 and 1. For the equation of the expectation value,
which is a function of C⇤, a Taylor series can be derived for C⇤ = C. When C⇤

�C
is replaced by ±��t/

p

N , one can see that the asymptotic value of µ will be 1/e
subtracted by a second order term that is proportional to 1/N while the first order
terms average out for large N due to the ±-sign.
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Fig. 4.2: Comparison of the normal distribution N (1/e � ↵/N,�/N) with the MN dis-
tribution for di↵erent N . For � > 0 the points on the dashed lines represent the relative
frequencies of all the Monte Carlo generated MN for which MN � µ > � is valid. As
comparison the inverse cumulative distribution function (cdf) of the normal distribution
is plotted (solid lines). For � < 0 the dashed curves show the frequencies of MN � µ 6 �
which can be compared to the standard cdf of the normal distribution. The number of
tests for each N is 1.3 · 105. [Prahl (1999), p.4, Fig.2]

According to the central limit theorem one expects further that not only the mean
value and the variance reach a common value for large N but also the whole dis-
tribution of M tends towards a normal distribution. Therefore the last step will be
the determination of only two parameters: the di↵erence between µ and 1/e and
the standard deviation. Because their dependencies on N had been already ex-
plained above, it only remains to find two constants ↵ and � for which the following
equations are true if N is large enough (N & 10):

µ(MN) =
1

e
�

↵

N
and �(MN) =

�
p

N
(4.20)

In extensive Monte Carlo simulations of Poisson distributed event times Prahl con-
strained ↵ and � to the following values:

↵ = 0.189± 0.004 � = 0.2427± 0.0002 (4.21)

That the distribution ofMN is close to a normal distributionN (1/e�↵/N, �/N) can
be seen in Fig. 4.2 . Here Prahl compares the cumulative distribution function (cdf)
of the normal distribution with the relative frequencies of Monte Carlo simulated
MN . Only for event numbers N 6 10 a small deviation from normal distribution
can be seen but this will just make the result for low N more conservative due to a
slightly smaller �.

Comparison with other methods and dead time treatment

The sensitivity of this method was compared with the Kolmogorov test and with
the standard method using just the event counts. It could be shown, that the exp-
test results in an improved significance which can be up to 50% higher than that of
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the standard method. Of course this depends on the relative duration of the excess
compared to the whole measured time. Only if this tends to zero, which corresponds
to a sharp spike, the significance of the exp-test will reach the 50% improvement.
The comparison with the Kolmogorov test revealed that the exp-test is better suited
to find some or many short bursts while the Kolmogorov test is more sensitive for
comparable long states of increased rates [Prahl (1999), p.8, sec.5].

As a last remark about the exp-test, I would like to refer to the treatment of varying
temporal acceptance of the detector. If this is known, one just has to replace the
variable t by a scaled e↵ective time. Unfortunately in most experiments this is not
precisely known enough. Therefore Prahl developed a slightly modified method on
the basis of the procedure described above. Hereby one uses background events mea-
sured in dedicated o↵ regions (see subsection 2.4.4). The number of these o↵-source
events (so called Inter-Events) recorded between two consecutive on-source (signal)
events can be used as a substitute for the scaled e↵ective time. Less acceptance of
the detector reduces the number of detected on-source and o↵-source events equally.
Hence the mean number of the Inter-Events stays constant even for a varying ac-
ceptance.
In the work presented here, the purpose was to be independent of di↵erent back-
ground estimation procedures (see subsection 2.4.4). Hence, only data with almost
constant acceptance will be used for the analysis with the original exp-test (see
Equ.4.19).
It remains to explain how the dead time td is taken into account. One can treat
the dead time as several short switch-o↵s during data taking. This usually happens
directly after a triggered event, no matter if it is an event in the signal region or in
the background region. This leads to a di↵erent distribution of the signal �t, which
will be a summation of the pdfs fk,C0(�t) [Müller (1973), Müller (1967)] of finding k
events (signal or background) in the interval �t, multiplied by the probability that
the first k � 1 are just background and only the kth event is a signal event.

fs(�t) =
1X

k=1

fk,C0(�t) · psig(1� psig)
k�1 with: psig =

⇤sig

⇤sig+bkg

=
Csig+bkg

Csig

=
�t/tdX

k=1

( 1
C0 (�t� ktd))k�1

C 0(k � 1)!
e�

1
C0 (�t�ktd)

·

Csig+bkg

Csig

✓
1�

Csig+bkg

Csig

◆k�1

(4.22)

With C 0 representing the unknown true mean time di↵erence of the combined signal
and background events without any dead time influence. And with Csigand Csig+bkg

that denote the mean �T of the measured signal and the measured signal plus all
background events respectively. Therefore it is valid to write Csig+bkg = C 0 + td. If
td tends towards zero it follows that C 0 = Csig+bkg and equation (4.22) transforms
to:

fs(�t)
td!0
=

1

Csig

e�
�t
C0

1X

k=1

�
�t
C0 �

�t
Csig

�k�1

(k � 1)!
=

1

Csig

e
� �t

Csig (4.23)
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So in case the dead time is infinitely small the distribution of the �t between two
signal events is the same even if there are many background events occurring in
between. Otherwise one has to deal with Equ. (4.22) which has the same charac-
teristics as the simple exponential distribution (see Equ. (4.15) and Equ. (4.16))
but results in a di↵erent maximum when one applies the H(x) function to it (see
Equ. (4.18)). Plotting Equ. (4.22) with a dedicated plotting program one can see
that the resulting curve is similar to an exponential distribution Equ. (4.23) with
a shift of td towards positive �t. The smaller td is compared to Csig+bkg the better
the shape will be approximated by the exponential distribution. To be still able to
use the exp-test as derived above on has to take care of the td shift by subtracting
this amount from each measured �Ti in the data and from the mean value C⇤.
Due to the fact that td/Csig+bkg = ↵dt which is the overall dead time fraction, it is
reliable to use the approximation for the signal time di↵erence distribution as long
as ↵dt < 30%.

4.2.3 The Bayesian Blocks method

The method invented by Scargle is an analysis of time series addressing the detection
of intensity variations using Bayesian statistics. In contrast to the exp-test the input
data has to be in a quantized format, so the method is not fully unbinned. However
the bin size is not fixed and can be as small as required. Another di↵erence is
the form of the output. While the exp-test is just able to provide a fast answer
to the question if there is variability in the data or not, Scargles method delivers
the most probable segmentation of the observed time into smaller intervals during
which the data rate will have no significant variations. Thus, it delivers not only a
statement about the variability but also an information about the exact times when
the variations happen. These times are called change points.
In this section I will explain the method and its useful features. For a more detailed
explanation see [Scargle (1998)] and [Scargle et al. (2013)]

Bayesian approach

Using Bayesian statistics to find change points is not a new idea, as was already re-
ported by Scargle in [Scargle (1998), sec 1.3.]. The di↵erence in this approach here
is the search for change points by comparing likelihoods of di↵erent models and not
by comparing the likelihoods of their di↵erent parameters. Thus, one takes auto-
matically into account the fact that more complex models are less desirable. Firstly,
let’s briefly summarize Bayes’s theorem, which is the basic relation of determining
parameter inference:

P (✓|D,M )P (D|M ) = P (D|✓,M )P (✓|M ) (4.24)

where D is some data and M indicates a model with the parameter ✓. If there
is more than one parameter ✓ can just be treated as a vector. With this relation
one can estimate the probability that a specific model is correct and one can learn
something about the most likely parameter solely on the basis of the data measured
and some prior information one might have. Both sides of the equation above are
just di↵erent ways of describing the same combined probability of getting a certain
parameter ✓ for the observed data D under the assumption of a model M .
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Model comparison

In the case described here the main goal is the comparison of di↵erent models for a
given set of event times observed during a time interval T . Basically one is interested
in two di↵erent models:

1. M1: constant intensity over T

2. M2: two subintervals (T1 + T2 = T ) with di↵erent intensities

Using the Bayes’s theorem one can create the ratio Rk,j of the conditional probabil-
ities that a specific model Mk fits the measured data D:

Rk,j =
P (Mk|D)

P (Mj|D)
=

P (Mk|D)P (D)

P (Mj|D)P (D)
=

P (D|Mk)P (Mk)

P (D|Mj)P (Mj)
(4.25)

Now one has to derive a formula for the quantity P (D|Mk) which is the same as
the likelihood L(Mk, D). It describes the probability of observing data D under the
assumption of model Mk without requiring a specific value for the parameter ✓k.
Because one has to take into account all possible solutions for ✓k then, the formula
will be an integration over d✓k. This can be proven as well by integrating equation
(4.24):

P (D|Mk) ·

Z
P (✓k|D,Mk) d✓k

| {z }
= 1 !

=

Z
P (D|✓k,Mk)P (✓k|Mk) d✓k (4.26)

As it is a required feature of a probability density function, the integral of P (✓k|D,Mk)
over all possible ✓k is 1. Together with this relation and equation (4.25) it follows:

Rk,j =

R
P (D|✓k,Mk)P (✓k|Mk) d✓kR
P (D|✓j,Mj)P (✓j|Mj) d✓j

·

P (Mk)

P (Mj)
=

L(Mk, D)

L(Mj, D)
· ⇢ (4.27)

with: L(Mk, D) =

Z
P (D|✓k,Mk)P (✓k|Mk) d✓k and ⇢ =

P (Mk)

P (Mj)

So the important part of the model comparison is the calculation of the likelihood
ratio L(Mk, D)/L(Mj, D). If one believes in an equal probability for all possible
models (⇢ = 1) one simply needs to search for the maximum likelihood, to find the
best fitting model.
More complex models with more parameters always increase the maximum likelihood
but are usually not the best ones to chose. Bayesian analysis automatically takes
this fact into account by integrating over all model parameters.

Constant Poisson rate models

In the next step one has to define a distribution function P (D|✓1,M1) for the constant
rate model M1. This depends on Poisson statistics and the data format of the
experiment. While Scargle describes the distributions for 3 di↵erent data formats
[Scargle (1998), sec 2.2.] I will concentrate on just 2 di↵erent distribution models.
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4.2. EVENT TIMES IN SIGNIFICANCE CALCULATION

The basis of all distribution models is the Poisson process with a constant rate �
over the observed time interval T . The number of events Xm in a short subinterval
�tm will then be:

P (Xm|⇤,M1) =
⇤Xm

Xm!
· e�⇤ with: ⇤ = ��t (4.28)

One can assume that the arrival of photons in di↵erent subintervals is independent
of that in adjacent intervals. Therefore the model distribution of the data in an
interval T will be the product of the Poisson distributions for each subinterval m:

P [D|M1(⇤, T )] =
MY

m=1

P (Xm|⇤,M1) with: T =
MX

m

�tm (4.29)

Depending on the experiment, the output can be the exact arrival times of each
single photon or the number of photons during some discrete time bins. There are
also some other data formats which I will omit in this section because there are not
important here.

Time-tagged event (TTE) data: If the output contains the exact arrival times
of N photons, Scargle calls this mode the time-tagged event (TTE) data. Due to the
finite time resolution (�t 6= 0 ) one can interpret the data period as M time bins with
a size small enough that the number of photons in it is just zero or one (Xm = {0, 1}).
As shown in Equ. (4.29) one has to multiply all the Poisson probabilities which can
attain only two di↵erent values p0 = P (Xm = 0) and p1 = P (Xm = 1) ⇡ 1 � p0.
The entire probability for the observed data will then look like this:

P [DTTE|M1(p0)] =
MY

m=1

P (Xm|p0) = pN1 p
M�N
0 = (1� p0)

NpM�N
0 (4.30)

The equation reduces to a binomial distribution with the parameter p0, which de-
pends on the constant Poisson mean ⇤. What is missing to calculate the full like-
lihood for the constant rate model L(M1, DTTE) is the prior of the parameter p0
given the model M1. Assuming that the probability is uniformly distributed over all
physical realizable values of p0 one can express this with the following function:

P (p0|M1) =

(
1 for 0 6 p0 6 1

0 otherwise
(4.31)

Together with Equ. (4.30) one can finally calculate the likelihood:

L(M1, DTTE) =

Z
P [DTTE|M1(p0)]P (p0|M1)dp0 =

Z 1

0

pM�N
0 (1� p0)

Ndp0

=
�(M �N + 1)�(N + 1)

�(M + 2)
=

N !(M �N)!

(M + 1)!
(4.32)
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Binned data: A slightly di↵erent likelihood will be the result if the data doesn’t
provide the single photon times but the number of events in M evenly spaced time
intervals instead. This case will be called binned data and the only di↵erence to the
time-tagged data is the larger bin size with Xm being usually much bigger than one.
According to Poisson statistic the distribution of the data given the model M1 with
the constant mean ⇤ will be:

P [DBIN |M1(⇤)] =
MY

m=1

P (Xm|⇤) =
MY

m=1

⇤Xme�⇤

Xm!
=

⇤Ne�M⇤

QM
m=1 Xm!

(4.33)

where N =
PM

m=1 Xm is the total number of photons in the entire dataset.
In the next step one can omit the denominator in Equ. (4.33) because the product
of all Xm! stays the same even if we split the data into more parts with di↵erent
probability distributions P [DBIN |M2] =

Q
j P [DBIN,j|M1(⇤j)] with DBIN,j ✓ DBIN .

Thus the denominator cancels out if one calculates the likelihood ratio between the
constant rate model M1 and the model for several subintervals M2.
Again one needs to define a prior for the parameter ⇤ before one can derive the
likelihood for this kind of data format. Scargle chose the nonuniform but normalized
prior:

P (⇤|M1) =

(
e�⇤/(1� e�C) for 0 6 ⇤ 6 C

0 otherwise.
(4.34)

With this prior one has the advantage to express the belief that the mean value ⇤
cannot exceed a specific value C due to instrumental limitations. A possible limiting
factor could be the dead time. In this case the mean value cannot be larger than
C = Tsig/tdead (= ⇤max) with the time in a bin Tsig during which a signal event can
be detected and the average dead time of a single event tdead. Note that Tsig can
be smaller than the bin width Tbin. This is due to all the background events not
appearing in the data of the signal region but being responsible for a non negligible
amount of dead time during which no signal detection is possible.

Tsig = Tbin(1� ↵dead) with: ↵dead = dead time fraction (4.35)

Of course the fraction ↵dead includes also the dead time of the signal events that we
don’t want to take into account for the calculation of Tsig. However the dead time
induced by background events is nearly 100% compared to the dead time of the rare
events in the signal region.
With all this information one can derive the formula for the likelihood:

L(M1, DBIN) =

Z ⇤max

0

⇤Ne�(M+1)⇤

1� e�⇤max
d⇤

=
N !

(M + 1)N+1
·

1�
PN

k=0(⇤
k
max/k!) · e

⇤max

1� e�⇤max

=
N !

(M + 1)N+1
·

PPois(k > N |⇤max)

1� e�⇤max

| {z }
⇡ 1

(if: ⇤max!1 and N⌧⇤max)

(4.36)
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In case of measurements with ground-based gamma-ray telescopes the number of
events N is much lower than ⇤max. Further the dead time after an event tdead is
relatively low compared to the distance between two signal events which is in the
order of seconds. Hence a bin width of Tbin ⇡ 1 sec is a reasonable choice. Even
after subtraction of the background dead time is Tsig still much larger than tdead and
therefore it is valid to use the approximation of ⇤max ! 1 and N ⌧ ⇤max in the
last line of Equ. (4.36).

An interesting point about all these likelihoods is that they just depend on the
number of events N and the total number of time bins M but not on the single
event times. So completely di↵erent datasets have the same likelihood of being
described by a constant rate model if their numbers N and M are identical.

Segmented Poisson rate model and likelihood ratios

After explaining the constant rate models it is now just a small step to the segmented
model. Basically one assumes a break in the data where the photon rate suddenly
changes and one analyzes each of those two subintervals D1 and D2 with durations
T1 and T2 separately under the assumption of a constant rate model. The point
separating the two segments with di↵erent rates ⇤1/T1 and ⇤2/T2 is called a change
point in time series and will be labeled tcp. Further it is valid to replace the duration
T1 of the first subinterval by tcp and T2 by T � tcp. The probability distribution of
the entire dataset D is then the combined probability of the two subintervals which
is, if we assume independence between those intervals, just the product of the two
constant rate distributions:

P [D(T )|M2(⇤1,⇤2, tcp)] = P [D1|M1(⇤1, tcp)] · P [D2|M1(⇤2, T � tcp)] (4.37)

Again one has to integrate over all the parameters and their prior probabilities to
get the formula for the global likelihood:

L(M2, D) =

Z
dtcp Pcp(tcp)

Z
d⇤1 P⇤(⇤1)

Z
d⇤2 P⇤(⇤2)

· P [D1|M1(⇤1, tcp)] · P [D2|M1(⇤2, T � tcp)] (4.38)

For the prior distributions of the di↵erent ⇤i one chooses those from above according
to the data type that is used. The prior of the change point is assumed to be uniform
because there is no reason to favor some tcp over other possible values. Furthermore
it is more useful to denote the change point location by the integer mcp instead of
tcp due to the discrete time measurement in each of the di↵erent data types. All
together the integral in Equ. (4.38) will reduce to a sum over all possible constant
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rate likelihood combinations multiplied by the constant Pcp = 1/(M � 1):

L(M2, D) =
M�1X

mcp=1

L[M1(mcp), D1] · L[M1(M �mcp), D2] ·
1

M � 1
(4.39)

⇡

N�1X

ncp=1

L[M1(mncp), D1] · L[M1(M �mncp), D2] ·
�mncp

mN�1

(4.40)

Through this approximation one assumes the likelihood product to be constant for
all the change points located between the arrival of two consecutive signal photons
[Nj, Nj + 1] which are separated by �mncp time bins. Therefore one parametrizes
the change point as mcp = mncp and reduces the summation over mcp to one over
the photon index ncp.

Finally one has to divide the likelihoods of the di↵erent models according to Equ. (4.27)
to get the final odds ratio:

R2,1 =
L(M2, D)

L(M1, D)
=

1

M � 1

M�1X

mcp=1

L[M1(mcp), D1] · L[M1(M �mcp), D2]

L(M1, D)

=
1

M � 1

M�1X

mcp=1

eln
�
L[M1(mcp),D1]

�
+ln

�
L[M1(M�mcp),D2]

�
�ln

�
L[M1,D]

�
(4.41)

If the data favors a constant rate model the value of R2,1 should be lower than 1
while in the other case it should be much bigger. Due to the very low values and
the large di↵erences between each other it is more convenient to use the logarithms
of the likelihoods. This makes it much easier for numerical calculations especially
because some likelihood values can go down to very low values. Values so low, that
they even can’t be stored in a standard 64 bit double format.

Data example and block separation

To make it more clear how the whole algorithm works I will show a plot of the
exponent of Equ. (4.41)

 M,N(mcp, ncp) = ln
�
L[M1(mcp), D1]

�
+ ln

�
L[M1(M �mcp), D2]

�

� ln
�
L[M1, D]

� �
with: ncp = n(mcp, D)

�

= ln

✓
ncp!

(mcp + 1)ncp+1

◆
+ ln

✓
(N � ncp)!

(M �mcp + 1)N�ncp+1

◆

� ln

✓
N !

(M + 1)N+1

◆
(4.42)

taking into account the likelihood distribution of the binned data type (see Equ.
4.36).
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Fig. 4.3: Two dimensional function of the exponent  M,N (mcp, ncp) for M = 1500 and
N = 150. In (a) the surface of the function is shown in a 3D plot. The x-axis accounts for
the discrete time bins mcp and the y-axis for the number of events ncp inside the interval
[0,mcp]. Additional the contours of  M,N (mcp, ncp) are drawn in the x-y-plane (see also
(b) ) together with a grey curve that visualizes some arbitrary data D of distinct events.
According to this data D an example is shown in (c) of how these single events could be
distributed (black) over the time bins mcp and how the corresponding  M,N (mcp) would
look like (grey). This is a projection of the  M,N (mcp, ncp)-values of the grey curve in (a,
b) to the mcp-axis.
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As one can see in Fig. 4.3 (a,b) the lowest values of the two-dimensional function
of  M,N(mcp, ncp) can be found on a diagonal in the mcp-ncp-plane from (0,0) to
the the maximal possible point (M,N). In this example the following values have
been used: M = 1500 and N = 150. Furthermore one can see a gray curve in the
mcp-ncp-plane. With this curve I want to visualize all possible mcp-ncp-combinations
of a certain dataset

�
see Fig. 4.3 (c)

�
. If this monotonically increasing curve stays

close to the diagonal, inside the red contour line, which denotes the area where
 M,N(mcp, ncp) 6 0, the summation over all mcp, as in Equ. (4.41), will then lead
to a result for R2,1 that is smaller than one and thus expresses a preference of the
constant rate model M1. This makes perfectly sense because all points (mcp, ncp)
on the diagonal have the same ratio as N/M and therefore have the same rate at
every time bin m.
Further it is visible in the contour plot

�
Fig. 4.3 (b)

�
that a distribution of events

concentrated at the beginning or at the end of a measured data period would lead
to a strong deviation from the diagonal and therefore to a much higher odds ratio
R2,1. While if all the events are concentrated in a short time interval right in the
middle of the measured duration the odds ratio would still be bigger than one but
less dominant.
During the computation of the sum in Equ. (4.41) given the data D one will auto-
matically find the point mcp where  M,N(mcp, ncp) is at its maximum. Splitting D
at this change point leads to the highest possible likelihood. If one is interested in
splitting the data in more than just two blocks one can repeat the whole method for
each of the two subintervals separately ending up with three change points and up
to four subintervals. This procedure can be continued until one reaches the desired
split level or until the subintervals are too small and disfavor any further splitting.

Last remarks

The Bayesian Blocks method provides the time of the change points in rate and
an estimate if the data follows a poisson distribution with a constant rate over the
whole period or not. Due to the small statistics in case of ground-based gamma-ray
astronomy there will be almost always a deviation from the constant rate model
even if the data consists solely of background evens with a constant rate. As I will
show later, the expectation value of the odds ratios, computed for datasets without
variability, is much smaller than one and depends on M and N . It was therefore
necessary to perform Monte Carlo tests. During each test some predefined number
N of events were uniformly distributed over M time bins. This represents the case
of the constant rate poisson distribution. By calculating the odds ratio for each of
those Monte Carlo tests one gets the distribution of R2,1 under the assumption of a
constant rate model. Any significant deviation from this distribution will then be a
proof of a fluctuation in the rate of some measured data.

Finally I will mention briefly the fact that Scargle already increased the e�ciency
of his method [Scargle et al. (2013)]. Especially the technique of finding several
change-points was improved and makes it now possible to find them during data
taking.
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The idea is to iterate over all measured time bins and calculate at each bin m the
probability of a constant rate model M1 between this bin m and the last measured
bin M . Afterwards, one has to multiplying this probability with the best block
separation found in the interval between the first time bin and bin m� 1. The best
block separation is computed during an earlier iteration step and its overall fitness
at bin m� 1 is stored in the program. It is now the goal to find that bin m where
the combined probability of the best block separation before m and the constant
rate model after m reaches its maximum. This value of m is then stored in the
program as the change-point of M together with the overall probability which will
than represent the best block separation at bin M . Repeating this procedure for
M + 1 bins after a new bin was added to the data will result in a di↵erent change-
point and and a di↵erent overall fitness.
Beginning at bin M = 1 one can determine the best block separation for each
bin until the last measured bin. This even works during data taking when the
number of the last measured bin is much smaller than the unknown final bin number
Mfinal, which marks the end of observing. When this is reached, one can get the
separation of the best fit by searching backwards trough the list of stored change-
points. Starting at Mfinal, one gets the corresponding change-point and jumps to
this bin cp(Mfinal) = mcp1 . At this bin one looks again for the corresponding change-
point which leads to the next lower change-point cp(mcp1) = mcp2 . Continuing this
recursive procedure until the first bin m = 1 is reached will then lead to the full
recovery of all the change-points of the best fitting block separation for the whole
dataset with Mfinal time bins.
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Chapter 5

Test of statistical methods

After understanding the di↵erences of the methods described in chapter 4 my goal
was their comparison on the basis of Monte Carlo generated events in the field of
view of a VERITAS camera. Therefore we wrote a program1 to simulate skymaps
with or without some variable source and to test the di↵erent methods on these
simulations. Further it is also capable of accepting output from standard event
analysis to search for variability in VERITAS data. In this chapter I will present
the outcome of the Monte Carlo measurements and the results of the methods after
applying them on data.

5.1 The analysis program - timingSignificance

In this section I will describe its basic functions and the procedure of analyzing data
or Monte Carlo events.

5.1.1 Mode of operation

As a starting point for the test setup we generate events with time di↵erences �t
following the above-mentioned exponential distribution (see sec.:4.2.2, Equ. (4.13))
assuming a mean value 1/�. The events are generated until a predefined duration
T =

P
i �Ti is reached. We also take into account a certain dead time td. By dead

time, we mean the time of detector ine�ciency between two consecutive incoming
events due to the readout process initiated by the first event. In case of VERITAS
the dead time is around 0.3 ± 0.02 · 10�3 sec. So in our simulation, the time dif-
ference has to be at least as large as the dead time which is achieved by shifting
the exponential distribution to the right by td. This way also the mean value gets
shifted by td
When we simulate solely background, we use the background rate as input for �.
When we simulate background events with additional signal events, we use the sum
of those two rates (signal rate and background rate) as input. As we generate one
event after another, we then have to decide after each event if it should belong to
the background events or to the signal events. This is done randomly in a way that
in the end the overall number of the signal events and the number of the background
events represent the rates specified by the user when executing the program. It is

1c++ program on the basis of existing EVENTDISPLAY and ROOT libraries.
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clear that the rate of events, readout by an IACT like VERITAS, will be smaller
than the triggered rates due to the mutual dead time influence of consecutive events,
no matter if they are of the same type or not.
Before further processing the simulated events, it was necessary to throw away a
large fraction of the readout background events to match the quality cuts, the radial
acceptance and the gamma-hadron filtering in the VERITAS analysis chain. As a
rough estimate, we choose a fraction floss of 98.9% (for post-upgrade) or 99.7% (for
pre-upgrade). We will describe these cuts later in this chapter. For the generated
signal events, however, we use the value of the rate after all cuts instead of the
trigger rate as the input parameter. Of course this is a simplification because the
signal rate at trigger level would be larger, but in the end we only need a value of
the signal rate after cuts for our further study. The true value of the triggered signal
rate is only necessary for the correct dead time treatment. However, compared to
the much larger trigger rate of the background events this correction would be only
marginal. This is why we just use the signal rate after cuts for our simulation.

After the generation and the filtering of an event in time one has to assign a random
position (x, y) somewhere in the VERITAS field-of-view. Here with the values x
and y the deviation of the direction of an incoming event from the central axis is
given in degrees. In case of a background event the position is distributed across
the whole field-of-view according to the radial acceptance A(x, y) of the VERITAS
system (see Fig. 2.16). But if an event should represent a signal photon from a point
source the idea was to use a two-dimensional Gauss distribution instead, which is
centered around a mean position that has been randomly generated somewhere in
the VERITAS field-of-view at the beginning. Of course, the e↵ect of the radial ac-
ceptance will be also taken into account for those signal events. The result of this
procedure represents a random signal position with a spread due to reconstruction
errors, the so-called signal region (= 68% containment radius). This kind of signal
simulation is su�cient for our purpose in which we don’t want to restrict ourselves
to a specific location in the field-of-view where we expect a flaring signal with a
sudden rate change.
Due to the independence between the position of an event and its time, the temporal
distribution of all the events found in a small area �Si compared to the full size of
the observable part of the sky S will be still Poisson distributed. The only di↵erence
will be the rate �i which is then proportional to �Si · A(x, y).

Finally one has to store all these informations in an easy-to-handle way. In this
program, a two-dimensional array with fixed length and fixed bin width was chosen
to represent the position of an event. Further, each bin of this array contains a non-
fixed, scalable array to keep the exact time information of each single event assigned
to that position bin. This was done because we don’t now from the beginning how
many events will occur in each position bin and we don’t want to waste to much
computer memory by reserving unused space.
Looping over the two-dimensional array, the program is now able to analyze each bin
separately by obtaining the time array of this position bin and applying the di↵erent
methods on it. While the two methods dedicated to find rate changes require the
vector from each position bin, the standard method just needs the amount of events
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in this bin together with an additional array of OFF-region events. This procedure
is completely handled by existing classes and libraries from the standard analysis
package and was already described in an earlier chapter (see subsection 2.4.4). Here
we use the reflected region background estimation for the standard method. The
output of each method in the form of multiples of the standard deviation � is
then visualized bin by bin in the form of a two-dimensional map. Additionally a
distribution of the standard deviation of all the bins is plotted for each method
separately.

5.1.2 Implementation of time-sensitive methods

exp-test (Prahl): The Method relies on the time di↵erence �Ti of each event
with respect to the following one and the mean time di↵erence C⇤ between all
adjacent events in the whole observing period.
In the program, we use for each position bin the corresponding list of times of all
events belonging to this position bin. After sorting this list, the program iterates
over each entry and subtracts from this time the time of the previous entry and
the deadtime td to get the deadtime corrected time di↵erences �Ti. In the end,
one will compute N � 1 di↵erent �Ti, where N is number of all entries in the list.
Two additional �T will be calculated which are the �Tstart between the first event
and the start of the data taking period, and the �Tend between the last event and
the end of the measurement. Then the value of C⇤ is just the sum of all deadtime
corrected �Ti divided by the number of all calculated time di↵erences N + 1.
After calculating C⇤ a second iteration over the same list is done but this time the
algorithm sums up all 1��Ti/C

⇤ for which�Ti 6 C⇤ is true (see Equ.: 4.19). Again,
this sum is divided by N +1 to get MN which is the normal distributed result of the
exp-test. Because the mean value µ(MN) is not at zero and the standard deviation
�(MN) is not equal to one (see Equ.: 4.20), the final step of the exp-test algorithm
is a transformation of the result MN into a value following the standard normal
distribution (µ = 0, � = 1). In doing so, we subtract µ(MN) =

1
e
�

↵
N

from MN and

divide this di↵erence by �(MN) =
�p
N
.

In the end, one has a normal distributed result which serves as an indicator of the
variability of the event sequence in the list. A result of 5, for example, will then
represent a significance of 5� that the underlying sequence cannot be described by
a random Poisson distribution with a constant rate. A result of 0, however, would
be in perfect agreement with events from a constant source.

Bayesian-blocks method (Scargle): In contrast to the exp-test the event
times data has to be binned for the Bayesian-block methods. We chose a bin size
of 1 second because this is small enough to keep the amount of entries per bin rea-
sonable low in case of high gamma-ray rates, but it is also wide enough to reduce
the amount of empty bins in case of low gamma-ray rates. As the event times are
given in seconds but in decimal numbers, the program has to round o↵ each time
to integer numbers. In the end each event got assigned to a specific time bin and
each time bin can hold more than one event. During the analysis of the data, we
get the information on the duration of the observing period, and we can calculate
the number of time bins that represent this duration. A typical observation with
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5.1. THE ANALYSIS PROGRAM - TIMINGSIGNIFICANCE

VERITAS takes 1200 or 1800 seconds, so the number of time bins will be 1200 or
1800. As already explained before, we want to apply the algorithm on each bin in
the position map. Therefore we have to retrieve the sorted list of the times belonging
to all the events that get reconstructed at this position bin.

The computation of Equ. (4.41) is split into several steps. An important part is the
numerical calculation of the log-likelihood of a single-block model (see Equ.4.36).
Because the deadtime of the VERITAS experiment is very low we can apply the
same approximation as it was done in Equ. (4.36) which will result in the following
term:

ln(L1(M,N)) = ln

✓
N !

(M + 1)N+1

◆
= ln

✓
1

M + 1

◆
+

NX

i=1

ln

✓
i

M + 1

◆
(5.1)

So we just need the number of events N and the number of time bins M for that
block. If the block represents the whole event sequence of the analyzed list, M is
just the number of all time bins in the observing period and N is the number of all
events that are found in the list. The time information of each event is not impor-
tant during the computation of the single-block log-likelihood.
Because M can reach values up to 1800 this logarithm will be a large negative num-
ber. When this is solved numerically it is crucial to use the term on the right side
of this equation and calculate the logarithm of each i/(M + 1) separately in a loop
and sum up all the results. It is not possible to compute the left side of the equation
with a computer program directly due to the limited accuracy of standard computer
variable types which results in the calculation of the undefined ln(0). Each single
n/(M+1), however, is not too small so that the logarithm delivers reasonable values
which can be handled by the code.

In a next step, which is illustrated in Fig. 5.1, the algorithm has to iterate over
almost all time bins mcp = {1, 2, ..., M � 1}, split the event sequence into two
blocks at that bin (events in time range [1,mcp] and events in range [mcp + 1,M ])
and calculate the two-block log-likelihood. This is just the sum of both one-block
likelihoods:

ln (L2(mcp,M,N)) = ln (L1(mcp, ncp)) + ln (L1(M �mcp, N � ncp)) (5.2)

During one loop, we add the number of events, belonging to a time bin, to the sum
of events found in all the time bins before. This will result in the number of events
ncp at this changepoint.
According to Equ. (4.41) it is necessary to subtract the log-likelihood of the one-
block model from the ln (L2(mcp,M,N)) before starting the new loop at the next
time bin mcp+1. This di↵erence was called  M,N(mcp, ncp) in the preceding chapter
(see Equ.4.42). If one wants to calculate the odds ratio as a fraction between two
likelihoods instead, as it is indicated by the second term of Equ. (4.41), one will
su↵er again from the limitations of standard variable types which are not able to
store such large values accurately. Therefore we us  M,N(mcp, ncp).
In the final step we use the result of the di↵erence  M,N(mcp, ncp) between the
log-likelihoods as an exponent over e and calculate the mean of all those outcomes
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initialize iteration:
ncp = 0; mcp = 1; max = -999; sum = 0

input:
data with N events
and M time bins

likelihood calculation:
ln (L2(mcp,M,N)) = ln (L1(M �mcp, N � ncp))

+ ln (L1(mcp, ncp))
 M,N(mcp) = ln (L2(mcp,M,N))

� ln (L1(M,N))
is  M,N(mcp)
> max ?

save new max:
max =  M,N(mcp)

mmax = mcp

nmax = ncp

summation:
sum = sum + e M,N (mcp)

is M � 1
> mcp ?

increase mcp:
mcp = mcp + 1
ncp = n(mcp)

output:
best changepoint position : mcp,best = mmax

and likelihood ratio: R2,1 = sum/(M � 1)

yes
max

yes

get latest mmax

no

Fig. 5.1: Flowchart of the iteration processes inside the Bayesian-blocks mechanism:
Give an event sequence with N events in M time bins these processes determine the
likelihood ratio R2,1 and the time bin mcp,best where splitting the data in two blocks is
most probable. The solid lines show the direction of the process sequence, the dashed
lines show the transfer of values from one process to another and the double dashed line
represents a readout of a stored value.

during the iteration over M � 1 time bins. This mean value represents the final
odds ratio between the two di↵erent models. Due to the large values it was more
convenient to use the logarithm of the odds ratio as final result. Unfortunately this
value doesn’t follow a standard normal distribution which is reason why we have to
examine its distribution for random event sequences simulated with a constant rate
which will be described later.
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An additional feature of the Bayesian-blocks method is the ability to determine the
time bins where the rate changes. This is done during the iteration over the time bins
and the calculation of each ln (L2(mcp)). If this value was bigger than the largest
one calculated so far during one of the preceding loops the actual ln (L2(mcp)) will
be stored in the code as the new maximum and the according time bin mcp as the
new best separating changepoint mcp,best. After iterating over all bins, there will
be a remaining mcp,best which represent the point where a separation of the event
sequence into two blocks, described by di↵erent rates, would be most probable.
When the first iteration, over all time bins, is finished the outcome covers the log-
arithm of the odds ratio and the bin number of the best block separation: mcp,best.
To find two additional changepoints the event sequence gets split into two blocks at
mcp,best and the whole procedure is repeated for each block separately.

After the execution of the whole Bayesian-block algorithm one will obtain the best
block separation bin mcp,best together with the odds ratio calculated for the whole
event sequence. Furthermore the output includes the two additional changepoints
(mcp,best,1 , mcp,best,2) together with two odds ratios, calculated for each of the re-
sulting blocks that have been determined by the mcp,best during the first iteration.
As additional information we keep the information of the number of events in each
of the three blocks, their duration in units of time bins and the number of events
before the best block separation bin inside that block.

5.1.3 Input parameters and options

Rate and duration of signal and background: As input parameters, one can
choose the duration T and the rate of the background events �bkg triggered, but not
necessarily getting readout, by the telescope system from arbitrary directions as well
as the rate �sig and the duration Tsig(< T ) of signal events getting reconstructed in
a narrow but random area of the field-of-view.
Because the goal of this study was to compare di↵erent statistical methods in case of
a transient source, Tsig will always be chosen to be much smaller than the duration of
the background events. While the duration Tsig is defined, the start time of the first
signal event will be picked randomly by the program because we aren’t interested
in a particular time when a flare occurred, but just by its duration compared to the
overall observing time. A typical distribution of events in time, where an additional
transient signal has been added, is shown in Fig. 5.2 (bottom). In this figure we
show two examples representing two di↵erent signal durations Tsig (150 sec and 350
sec) while the remaining input parameters are the same.

Signal spread and background e�ciency: The size of the signal area will be
defined by the signal spread parameter which takes account of the limited angular
resolution. The default value is 0.14� which represents the average resolution at a
energy of 200GeV. In Fig. 5.2 (top) we compare the e↵ect of di↵erent signal spreads
by looking at the position maps, whose bins contain the number of all gamma-ray-
like events getting reconstructed at the position of that bin. This map is also known
as the ON-map (see subsection 2.4.4)
The background e�ciency parameter is the same as 1-floss. With this parameter
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Fig. 5.2: Comparison of di↵erent angular resolutions (top) and di↵erent signal durations (bot-
tom). For both ON-maps we chose: T = 1800 sec, �bkg = 500 Hz (true rate � gamma-like
rate), floss = 99.7%, �sig = 0.4 Hz and Tsig = 150sec. The magenta circle represents the position
of the simulated signal and the simulated spread. One can see that the signal peak in left plot
is less pronounced compared to the case of a smaller spread (= 0.09�) in the right map. The
two bottom plots show the times of all transient signal events (black) and of all continuous
background events (green) together, coming from the same position bin at the center of the
magenta circle.

one adjusts the number of background events in the final ON-map. By doing so, we
simulate the process of background separation which is performed by the application
of cuts on data. The e↵ect of the cuts depends on the data and of course on the
values of the cuts used in the analysis program. As a default value we use 0.011 for
the background e�ciency which represents the e↵ect of typical cuts optimized for
sources with a soft spectrum and used during the analysis of actual VERITAS data.
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Di↵erent Bayesian-block algorithms: Further options are the choice between
the Bayesian-blocks method looping over each possible time bin (continuous method)
or jumping just from filled bin to the next filled one (discrete steps method) assuming
there is no change of the likelihood in between (Fig. 5.3). See also Equ. (4.39) and
Equ. (4.40). The first method is of course faster but not as accurate as the second
one. If the number of events in the time vector of each position bin is small the
di↵erence in the processing time is also small. The larger the number of events gets,
the larger will be the e↵ect of saving some processing time. If one analyzes a strong
and non variable source where almost each time bin contains one or more events
(N > M) the two methods are equal and there is no time saving. But usually only
the bins at the position of a self generated Monte Carlo signal or at the position of
a real source (= center of ON-map) are filled with lots of events.

Fig. 5.3: This plot shows the two di↵erent Bayesian-block algorithms with the y-
axis representing the logarithm of the odds ratio  M,N (mcp, ncp) (see Equ. (4.42)).
The vertical black lines mark the exact times of all events that got assigned to the
same position bin. Assuming each time bin on the x-axis could be a possible change
point mcp separating the sequence of events in two parts, the red curve shows the
continuous  M,N (mcp, ncp)-function calculated at all time bins (see Equ. (4.39)).
The spikes mark the times when there is an event. The blue curve, however, is
produced under the usage of Equ. (4.40), assuming that the only relevant changes in
the odds ratio occur between two events. This procedure is less accurate but faster.
In this example both algorithms found the changepoint ( M,N (mcp, ncp) = max.)
at the same time bin (mcp ⇡ 720 sec).

Some further parameters and options dedicated to read external data files and to
improve the processing speed will be explained in detail in A.

5.2 Output of test statistic and best block sepa-
ration

5.2.1 p-value of Bayesian-blocks method

Before we compare the di↵erent methods it is necessary to point out that the results
of the Li&Ma equation (Equ. 4.9) and the exp-test (Equ. 4.19) calculated at all
position bins is distributed like a normal distribution (� = 1) if there is no signal.
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Hence, each result with a value of more than five will be considered as a signal
detection, depending on what is defined as a the signal one is looking for - number
of events (Li&Ma) or variability (exp-test). The result of the Bayesian-block algo-
rithm, however, is the logarithm of a likelihood ratio: ln(R2,1) from Equ. (4.41) with
a distribution that cannot be described by a Gauss curve, even if the null hypothesis
is true and there is no transient signal in the tested dataset. For this reason it is
not possible to compare the output of the Bayesian-block method directly with the
ones from the other two methods and we have to use the p-value instead.
The p-value is a measure of how likely the outcome of a statistical test, the so-called
test statistic TS, occurred by chance, assuming that the tested dataset just contains
background events and no signal. It is the probability of finding a TS value equal or
larger than the currently measured one under the condition that the null hypothesis
is true (no signal) [Bender et al. (2007)].
If the distribution is known, which is true for the Li&Ma test and the exp-test, it
is easy to calculate the p-value in advance just by integrating the related function
from the measured TS value towards infinity. Unfortunately in the Bayesian-blocks
case we don’t know the function that describes the distribution. The goal is there-
fore the determination of the distribution and the related p-values by analyzing a
su�ciently large set of Monte Carlo test samples. Each of those samples consist
of events generated at random times but with a constant rate and time di↵erences
larger than the dead time of 0.0003 sec. In the end we get a p-value pBB for each
possible outcome of the Bayesian-block algorithm (= the TSBB value). We store
them in a histogram with a fine binning in the x-axis, which represents the TSBB,
and use it as a lookup table. In doing this, we are then able to read for each TSBB

value, measured during the analysis of an unknown dataset, the related pBB(TSBB)
from the lookup table. For small TSBB-values this is done by picking the corre-
sponding bin from the histogram and reading its bin content. In the region of high
TSBB-values the estimation of the p-value is not very accurate due to low statistics.
In this case we use an extrapolation to estimate the p-value. Therefore we fit an
exponential function to the p-value histogram between the test-statistic values 2 and
4. The p-values for all TSBB > 5 will then be evaluated by this function.
The determined pBB(TSBB) can then be used to find the corresponding TSnorm value
belonging to a normal distribution. Basically the whole procedure is a transforma-
tion of the TSBB value from the Bayesian-block algorithm into a normal distributed
TSnorm value, like the ones we get from the other two statistical tests. The calcu-
lation of the normal distributed TSnorm value related to a certain pBB is done with
the following equation:

TSnorm =
p

2 · erf�1
⇣
1� 2 · pBB(TSBB)

⌘
, (5.3)

with: erf(x) =
2
p

⇡

Z x

0

e�x02
dx0

and with erf�1(x) which is the inverse of the error function erf(x).
Analyzing a small set of test samples we realized that the distribution of the TSBB

and the related pBB-histogram depend on the choice of the input parameters. There-
fore it was inevitable to perform the Monte Carlo tests for all possible combinations
of N (= number of events) and M (= number of time bins) and get a di↵erent
p-value histogram for each combination: pBB; N,M.
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Fig. 5.4: Comparison of di↵erent p-value lookup tables generated for 20 6 N 6 60. In the
top section of the figure two representations of the same lookup table (M=1200; continuous
method) are pictured: two-dimensional with a logarithmic color scale representing the p-value
(right side) and a 3D plot of a small TS-value range with a linear p-value on the z-axis (left
side). The middle section shows the 2D lookup table for the same N range but generated under
di↵erent conditions: M=1200 and the discrete steps method (left side) and M=1800 together
with the continuous method (right side). For a better comparison the contour at p-value=0.5
of all those three lookup tables is drawn together in the diagram on the bottom left. On the
bottom right is a 2D histogram showing the correlation between the two di↵erent Bayesian-block
methods for each tested event sequence. The y-axis represents the TS value of the continuous
method and the x-axis represents the TS of the discrete steps method. Due to the strong
correlation (⇢ ⇡ 1) we can assume a linear relationship between the two TS-values and fit the
means of the y-bins (magenta dots) for each x-bin with a linear function (black line).

96



5.2. OUTPUT OF TEST STATISTIC AND BEST BLOCK SEPARATION

Due to the fact that we want to obtain a high statistic, even for large TSBB values, we
generate 107 test samples per N -M -combination. Hence, if N is large (⇡ 400� 800)
the duration of all 107 tests for just one combination can take up to a day even if the
process is parallelized. To reduce the amount of processing time we limit the avail-
able values for M to 1200 and 1800. With a bin width of 1 sec these values represent
the typical durations of a VERITAS run. Further reductions are achieved by not
simulating each N , especially if they are large. If during the analysis of a unknown
dataset a sequence of events occurs with a number Ntest for which there is no suitable
pBB; N,M-histogram available in the lookup table file, two other p-value histograms
got selected: pBB; N0,M and pBB; N00,M with N 0 and N 00 being the next higher, respec-
tively the next lower N referred to Ntest and an interpolation is performed between
them. It was therefore useful to store the p-value histograms of several consecutive
N -values, calculated for the same M , together in a two-dimensional histogram to
create a lookup table as can be seen in Fig. 5.4.
In the end we generated several lookup tables covering N -values in the range from
1 to 600. This is enough when we analyze data from the experiment, because the
number of events during a run of 1800 seconds is rarely above 600 if the observed
source is not exceptionally strong. Because we have the option of two di↵erent
Bayesian-block algorithms: the continuous changepoint calculation (=default op-
tion) or the discrete steps method, we also have to produce di↵erent lookup tables
for both algorithms.
In Fig. 5.4 one can see how the lookup tables change between di↵erent methods and
numbers of time bins. Especially when we use a lookup table that was generated
for a higher bin number M than the actual data was measured with. This is vis-
ible at the bottom right plot which shows the contour of the lookup table at the
same p-value but for di↵erent M and di↵erent methods. The shape of the lookup
table and the underlying distribution of the TSBB for M = 1800 is equal to those
generated for M = 1200 but with a shift of ca. 0.4 towards lower TS-values. Thus,
for each TS-value calculated by the bayesian-block method for a specific Mtrue one
will find a lower p-value than expected if one uses the lookup table generated for a
higher M than Mtrue. This leads to an overestimation of the corresponding TSnorm

which results in a distorted normal distribution making the comparison with the
other statistical tests impossible.
With the diagram on the bottom left of Fig. 5.4 one is also able to probe the correla-
tion between the outcome of both Bayesian-blocks methods. It is a two-dimensional
histogram with the x-axis representing the TS-values from the discrete steps method
and the y-axis representing the TS-values from the continuous method. In each bin
we count the number of all those Monte Carlo tests for which the resulting pair of
di↵erent TS-values correspond to the x- and y-values of this bin. By calculating
the correlation coe�cient ⇢ of this two-dimensional distribution we get ⇢ ⇡ 0.957
which represents almost perfect correlation (⇢ = 1). It is therefore valid to describe
the relationship between both TS-values by a linear equation. The parameters of
this equation can be found by fitting a linear function to the mean values calculated
for each x-bin taking into account the contents of all the bins along the y-axis that
belong to the same x-value. We can see that the slope is almost one while the y-
intercept is close to zero which means that most of the time the TS-value from the
continuous method and the one from the discrete steps method are very similiar.
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Later we will see if the relation between the exp-test results and the Bayesian-blocks
results is also that strong or not.
Another important fact is the usage of extrapolations for TSBB-values larger than
5. With increasing N all TSBB-distributions, and therefore all p-value histograms,
get shifted towards higher TS-values. We assume that this behavior is true for all
TSBB but due to limited statistics it cannot be expressed by the lookup table in the
region of large TS-values as can be seen in the three two dimensional lookup tables
in Fig. 5.4 . The idea is to fit the p-value histogram of each N separately between
TSBB = 2 and TSBB = 4 with an exponential function and extrapolate this curve if
it is necessary to get the p-value of a high TSBB.

5.2.2 significance maps and distributions

After explaining the transformation of the TSBB into a normal distributed test
statistic we can describe the output of timingSignificance program. It is intended
to provide an easy way of comparing the two di↵erent time-sensitive statistical tests
with each other and with the standard sensitivity calculations (Li&Ma method, see
sec. 4.1.2). Therefore the output consists, for each statistical method, of a two-
dimensional significance map, containing the test result calculated at each position
bin in units of standard deviations �, and the one-dimensional distribution of the
test results of all bins, also in units of �. The test results measure the deviation
from the null hypothesis, which is the assumption that there is no signal in the
analyzed position bins. It is necessary to understand that the hypothesis of “no sig-
nal” has diverse definitions for the di↵erent statistical tests. While for the standard
method “no signal” has the meaning of measuring a number of events per position
bin that is consistent with the number of background events at that position, the
idea of “no signal” in the context of the time-sensitive tests is a sequence of events
in time with a constant rate. Measuring a large value of the test result (> 5�)
will then also have di↵erent meanings. In case of the time-sensitive tests it tells
us that the events coming from a source cannot be described by a constant rate
and that the source has to be variable, if all other conditions during measurement
stay constant. In case of the standard counting method a large test result just tells
us that the number of events is too large to be made up by background events alone.

In Fig. 5.5 we show the ON-map that contains all the simulated events in the whole
field-of-view, the temporal distribution of all events found at the position bin where
the signal was generated and the output of the three di↵erent statistical methods
used to analyze a simulated transient signal and its background. For the generation
of the Monte Carlo events we use the following parameters: T = 1800 sec (and a
time-bin width of 1 sec ) M = 1800), �bkg = 330 Hz, floss = 98.9%, Tsig = 150 sec
and �sig = 0.4 Hz.
On the left side of the figure there are all the significance maps displaying the test re-
sults measured at each position bin and on the right side there are the corresponding
distributions of these test results. The black histogram shows the test result dis-
tribution of all bins in the significance map while the red histogram just takes the
bins inside the signal region around the signal position (black circle) into account.
The size of this region corresponds to the signal spread for which we choose a value
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Fig. 5.5: The two plots on top show the ON-map containing all the events (left) and the
distribution of all the events of the central MC-signal position bin along the time axis (right).
Below the output of the three di↵erent statistical tests is shown: standard on-o↵ method
(top), exp-test (middle) and Bayesian-blocks test (bottom). On the left side the significance
maps can be seen which display the significance calculated at each position bin in units of
standard deviation. The x- and y-value define the deviation of the incoming photon from
the optical axis in degrees. The black circle marks the signal region and represents a signal
spread of 0.14�. On the right side there are the corresponding one-dimensional histograms
representing the distribution of the TS-values of all bins in the significance map (black) and
the distribution of solely the bins in the signal region (red).
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of 0.14�. This represents the angular resolution of a source with a soft spectrum.
Additionally we allow correlation2 between bins closer than ✓ = 0.141� to each other.
The square of this distance is ✓2 = 0.02(�)2 which corresponds to the value of the
✓2-cut used during former standard analysis of soft spectrum gamma-ray sources to
distinguish the concentrated signal events from the background events with arbi-
trary directions. It also defines the size of the OFF-region areas necessary for the
reflected region background estimation during the standard significance test.
One can convince oneself by looking at the green fit function in each of the three
black histograms that the TS-values (in units of the standard deviation �) are nor-
mally distributed for all bins in the map besides those ones that are inside the
simulated signal region. All TS-values in this region deviate from the normal dis-
tribution as can be seen in the red histogram where all bins with TS-values higher
than 5 are considered as a signal detection.

For the standard method a detection means that the amount of events at the signal
position bin is significantly ( > 5�) higher than the number of events estimated as
background at this position. This is not the case in Fig. 5.5 where the highest value
inside the signal region is only around 4�. Obviously the duration of the signal
is too short to provide a large enough number of events to get detected with the
standard method.
The time-sensitive tests however don’t compare the number of signal events against
the background events but looking for rate fluctuations instead. Getting high TS-
values is therefore not a detection of a significantly larger amount of gamma-rays
but a detection of fluctuations stronger than expected for background with constant
rates. In our case here we are able to detect the signal with both time-sensitive
methods due to its strong fluctuation and not due to the number of events. The
strength of the fluctuation depends on how short the signal duration Tsig is compared
to the overall duration T and how much the rate changes due to the additional signal
events. Contrary to this, observing a strong source that has a constant rate during
the time of measurement T will of course be detected by the standard method but
will not lead to a detection by the time-sensitive methods. Therefore one goal of
this study was to measure the detection capability of the three methods for di↵erent
combinations of signal rate and signal duration.

5.2.3 Change points from Bayesian-blocks method

An additional feature of the Bayesian-blocks method is the possibility to find the
times, the so-called changepoints, when there are sudden changes in the rate due to
additional events coming from a flare. In the top plot of Fig. 5.6 one can see the
sequence of events occurring in the central signal position bin together with three
red marks representing the changepoints found by the algorithm.
During this study we make the simplifying assumption that the rate of events com-
ing from a transient source is constant as long as the flare is active and that the rate
of the background events during the rest of the time is constant as well but much
lower. Therefore it would be enough to look for not more than two changepoints

2for further details on correlation/smoothing read section A.1
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Fig. 5.6: Representation of the best block separation. In top plot one can see typical
output from the analysis program showing the times of all events assigned to the position
bin at the center of the signal region. The red marks define the changepoints which
divide the event sequence into three blocks. In the bottom plot it is visualized how the
algorithm finds these changepoints: During the first iteration of the continuous Bayesian-
block algorithm the logarithm of the odds ratio is calculated for each time bin being
the potential separator (black curve). The value of this curve can be interpreted as the
probability to split the data in two parts at this time bin. The bin where the probability
reaches its maximum is then called the first changepoint (1. cp). In a second iteration
the Bayesian-block algorithm is used again for each of the two subintervals, before (green
curve) and after the 1.cp (blue curve), separately to search for additional changepoints:
2.cp before and 2.cp after.

marking the start and the end of the flare and separate the whole measured time
into three blocks: just background before the flare starts, background and signal
during the flare and just background after the flare.
By looking at the black curve in the bottom plot of Fig. 5.6 one can see the loga-
rithm of the odds ratio calculated for each time bin during a first iteration of the
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continuous Bayesian-blocks analysis over the whole event sequence. The maximum
of this curve would define the position in time where a separation into two blocks
would be most probable. In this example the signal rate is 0.4 Hz and the randomly
generated start and end time of the signal are 1196 sec and 1346 sec while the back-
ground starts at 0 sec and ends at 1800 sec. The maximum is found at 1122 sec
which then defines the first changepoint that separates the event sequence into two
blocks. To find more changepoints our approach is now to repeat the Bayesian-block
algorithm for each block separately. The output of these second iterations, before
and after the first changepoint, are presented by the green and the blue curve in the
same plot. Again two di↵erent maximums, at 1 sec and 1336 sec, are found marking
the positions of the two changepoints from the second iteration.
In the end one gets three changepoints splitting the event data into four blocks. But
as we analyzed a simulated event sequence here that had a constant high signal rate
a block separation of not more than the above mentioned three blocks is enough.
Therefore two of the three changepoints confine the block that contains the signal
events while the third one just marks the beginning or the end of the overall back-
ground time T . In this example the block containing the simulated flare is supposed
to be between 1122 sec and 1336 sec which is quite close to the actual start and end
time (1196 sec, 1346 sec ).
How good the changepoint estimation works depends on the strength of the fluc-
tuation. If there is almost no sharp change in rate due to a weak source or a flare
with a long raise and fall time it will be di�cult to find the correct changepoints. In
most of these cases they will be close to t = 0 sec and t = T , meaning that the best
block separation would be just one big block containing all M time bins. Another
problem occurs if the overall rate of events is so low that the algorithm will try to
create blocks around the large areas of empty time bins, not regarding the whole
sequence as a single block.

5.3 Analysis of Monte Carlo simulations

Within this section we will compare the di↵erent statistical test by applying them
to simulations of transient sources as it was described in 5.1.1. The parameters
concerning the signal event simulation, like �sig and Tsig, will be varied to figure out
which of the three tests works best for which signal characteristics. The examined
interval for �sig is [0.05 Hz, 0.5 Hz] and the one for Tsig is [10 sec, 420 sec]. The other
parameters which describe the detector, the background and the analysis behavior
are fixed in such a way that the position maps (= ON-map) will be as close as
possible to the ones used during the standard event analysis of a real source.

5.3.1 Adjust simulation parameters

With the standard event analysis we mean the filtering of the data by cuts optimized
for a source with a soft spectrum (i.e GRB, Blazar). For the soft source analysis
simulation we adjust the size of the signal area to a value of 0.14� which represents
the reconstruction error of gamma rays in the low energy range ( E > 200 GeV).
Further we set the correlation distance to ✓ = 0.141� ( ✓2 = 0.02(�)2) which is the

102



5.3. ANALYSIS OF MONTE CARLO SIMULATIONS

✓2-cut that is used during the analysis of soft sources. This parameter is also used
as the size of the OFF regions in the reflected region background estimation.

It remains to choose the values for the total measured time T , the rate of back-
ground events �bkg and the background loss fraction floss. As there was an upgrade
of VERITAS which took place in summer 2012 the number of triggered background
events is much higher for measurements taken after the upgrade than for ones taken
before the upgrade. For low elevations, between 30� and 50�, an average trigger rate
after the upgrade is 330 Hz, while before it was around 180 Hz. We concentrate on
low elevations because transient sources like GRBs appear more likely under a low
elevation due to the larger fraction of sky that is observable.
Also the loss fraction is di↵erent for di↵erent VERITAS states. While 99.7% back-
ground events get removed from data that was taken before the upgrade it is only
98.9% for post-upgrade data taking into account the same cut values for both
datasets. However, these loss fractions are just estimates, which we determine by
comparing several ON-maps generated during simulations with the ones we get from
the analysis of di↵erent data (pre- and post-upgrade) under usage of the same soft
spectrum cuts: Number of triggered telescopes > 2; ✓2 = 0.02(�)2; MSCW 6 0.35;
MSCL 6 0.7; size of the second largest image > 400d.c.; distance of reconstructed
impact from array center 6 250m.
The last parameter that has to be adjusted is the background duration which is the
same as the duration of the run. During pre-upgrade times a typical run duration
was 1200 sec. After the upgrade we took longer runs and the new standard is 1800
sec.
In the end we have two di↵erent parameter selections accounting for two di↵erent
VERITAS states:

• pre-upgrade: T = 1200sec, �bkg = 180Hz, floss = 99.7% ! �bkg,S ⇡ 0.003Hz

• post upgrade: T = 1800sec, �bkg = 330Hz, floss = 98.9% ! �bkg,S ⇡ 0.018Hz

The value for the average background rate at the signal position �bkg,S is calculated
by subtracting the loss fraction from the rate and by multiplying this result with
the fraction of the signal area compared to the whole field-of-view:

�bkg,S = �bkg · (1� floss) · ✓
2/(2�)2

Finally we have to set the optimization parameters, which are responsible for the
process splitting and for the choice between the two Bayesian-blocks methods. We
select the equal process splitting and the continuous bayesian blocks method because
the overall time T and the amount of signal events are relatively small so by using
the discrete steps method instead we would just gain a little bit in processing time
but definitely lose some accuracy on the other hand. Because we are only interested
in the outcome of the time sensitivity tests applied to events inside the signal region
we use the parameter dedicated to restrict the analysis to a small area around the
signal position which reduces the overall processing time.
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5.3.2 Simulation of di↵erent signal characteristics

As it was mentioned at the beginning of this section we chose one of the two
parameter-sets and vary only the signal rate �sig and the signal duration Tsig. The
idea was to choose the range [0.05 Hz, 0.5 Hz] with a step size of 0.01 Hz for �sig
and the range [10 sec, 420 sec] with a step size of 10 sec for Tsig. For each of the
1600 di↵erent �sig and Tsig combinations we repeat the simulation 20 times with a
di↵erent random seed before we move on to the next combination. As an example
on can see in Fig. 5.5 the output of a single simulation for a specific combination of
�sig and Tsig.
From each of those simulation outputs one is able to extract the calculated signifi-
cance at the bin of the simulated signal position, which is of course also randomly
distributed. As we use three di↵erent methods we get three di↵erent significance
measurements from the same simulation output. We visualize the significance as

Fig. 5.7: Significance calculations by the exp-test applied to 32 000 Monte Carlo simula-
tions of 1600 di↵erent �sig-Tsig-combinations (a) and the median of the distribution along
the z-axis for di↵erent �sig-Tsig-combinations merged into larger bins (b). The signal du-
ration is presented in the form of a ratio Tsig/T on the y-axis. This makes it easier to
compare di↵erent scenarios with di↵erent observing durations T .
The two bottom plots (c) show the distribution of all significance values (exp-test = red;
Bayesian-blocks = blue) belonging to a certain point in the plot on the top right of this
figure. We choose the two examples of (�sig = 0.09; Tsig/T = 0.07) and (�sig = 0.40;
Tsig/T = 0.15)
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multiples of standard deviations � on the z-axis of a three dimensional diagram
where the x- and y-axis represent the input parameters used to generate this simu-
lation: the signal rate �sig on the x-axis and the ratio of Tsig/T as the y-axis. For
each method we get a separate diagram.
In Fig. 5.7,a one can see the significance calculated with the exp-test method of all
simulated signals. For the background generation we use the parameters simulating
the post-upgraded state (see 5.3.1). The significances for signals with the same rate
and same duration are stacked on top of each other along the z-axis. For comparison
reasons we determine the median of the significance distribution along the z-axis for
di↵erent combinations of rate and duration. To get higher statistics we combine the
results of di↵erent �sig-Tsig-simulations in larger bins. Each bin covers an area in the
�sig-Tsig-parameter space with a size of ��sig = 0.08 Hz and �Tsig = 70 sec. In the
end we have 6 ⇥ 6 measurements of the median as is shown in Fig. 5.7,b. We use
the median instead of the mean because the distribution of significance measure-
ments is not always close to a normal distribution and can be asymmetric for some
areas in the parameter space, which can be seen in the two plots at the bottom of
Fig. 5.7. For the calculation of the median and its 68% confidence interval we refer
to appendix B.4. Besides the diagram in Fig. 5.7,b we will then also create two
more diagrams: one for the upper confidence limit and one for the lower confidence
limit.

Contrary to our initial idea the number of signal simulations is not evenly dis-
tributed over the whole �sig-Tsig-parameter space. This is because we reduced the
amount of simulations for regions of the parameter space with significance results
much lower than 5� or much higher than 5� and concentrate more simulations on
the part of the parameter space whose significance measurements will be close to 5�.
At the end this whole simulation procedure will be repeated for a di↵erent background
simulation representing the pre-upgrade state.

5.3.3 Comparison of methods

Correlation between methods

In the section above we described our test setup to compare the three di↵erent meth-
ods. For each simulated signal we get three di↵erent significance measurements. If
we take now several signals and plot for each signal the significance of one method
against the significance of another method we are able to measure the correlation of
the di↵erent methods. Therefore we select all the simulations that had been used to
calculate one of the points in Fig. 5.7,b , plot them in a two-dimensional histogram,
where each axis represents the significance measurement of one of two di↵erent test
methods, and calculate the correlation coe�cient ⇢. We repeat this procedure for all
points in the parameter space of Fig. 5.7,b and end up with a set of two-dimensional
histograms as can be seen in Fig. 5.8.
In this example we compare the Bayesian-blocks method (y-axis) with the exp-test
method (x-axis) in case of the post-upgrade state. The diagonal line, which repre-
sents the situation when both methods lead to the same significance measurement
for a simulated signal, is plotted as well to guide the eye. If a large fraction of points
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5.3. ANALYSIS OF MONTE CARLO SIMULATIONS

is above that line one can say that on average the Bayesian-blocks method results in
a higher significance than the exp-test for this part of the �sig-Tsig-parameter space.
If a large fraction is below then the exp-test method is better. This can be also
visualized by printing the di↵erence between the medians of each method for that
part.
By looking at Fig. 5.8 we further notice that the spread of both time-sensitive meth-
ods increases with higher significance medians. Also the correlation between both
methods worsens when the median increases. On can also see that in average the
Bayesian-blocks leeds to higher significance measurements when the signal rate �sig
is small and the duration Tsig is quite long while the exp-test is slightly better for
high �sig and low Tsig. But in the end it is very di�cult to predict the output of an
individual measurement by just knowing its input parameters.
For a better visualization we plot the values of the correlation coe�cient and the
di↵erence between the medians for the di↵erent areas in the parameter space in
separate histograms (see middle and bottom plots in Fig. 5.9 ). On the left side we
simulated the VERITAS system before the upgrade and on the right side we simu-
lated the conditions after the upgrade. The empty bins in the histograms represent
the areas in the parameter space for which we didn’t generate simulations. By look-
ing at those histograms we see that on average there is a small correlation between
the di↵erent methods. But together with the information of the median di↵erences,
which are plotted in the bottom histograms, we can conclude that the output of one
method can never be predict by the output of the other method, which is why we
keep on using both methods during the analysis of data in the next section.

Flare detection capability

The contour plots: As we are especially interested in the detection capability
of the di↵erent methods we will concentrate more on the parameter space where
the medians of each method is close to 5�. Therefore we use the information from
the right diagram in Fig. 5.7 and determine the contour of this distribution in the
x-y-plane for a z-value of 5�. When we do this for all three diagrams of the three
di↵erent methods we get for each method a di↵erent contour which makes it easy
to compare the detection capability of the methods in the parameter space (see top
plots in Fig. 5.9 ). The upper right (shaded) part of these plots mark the parameter
space where the methods on average detect a signal. Because we are working with
the median the exact meaning is that in this region the significance measurements
of more than 50% of the simulations of each bin exceed 5�.
Of course we also want to estimate the error on the contour we determined for each
method. Therefore we repeat the procedure with the confidence limits instead of
the median values. It was explained in the preceding section how we calculate the
68% confidence interval of each median and that we stored the upper limits and the
lower limits in separate diagrams. The three solid lines, or put it in another way,
the three filled thin areas in the top plots of Fig. 5.9 define for each method the
areas between the contour of the upper limit diagram and the contour of the lower
limit diagram at a significance value of 5�. The contour of the median lies inside
these areas but is not displayed.
We will now analyze the contour plots in Fig. 5.9. The black shaded region defines
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5.3. ANALYSIS OF MONTE CARLO SIMULATIONS

Fig. 5.9: On the left side we see the results of simulations for a pre-upgrade conditions and soft
spectrum cuts. On the right side the results for the same cuts and the post-upgrade simulation.
Top: areas between the 5�-contours of the upper limit diagram and the lower limit diagram
for Bayesian-blocks (solid red), exp-test (solid blue) and standard method (solid black). The
limits correspond to a 68% confidence interval around the median. The magenta vertical lines
mark the typical rate of the crab source after cuts: 1 C.U. = one Crab unit. This rate is
di↵erent for di↵erent VERITAS states.
Middle: The color plots show the correlation coe�cients between Bayesian-blocks and exp-test
for each bin in parameter space ( see Fig. 5.8) for which we generated MC simulations.
Bottom: Histograms displaying the di↵erence between the medians of the Bayesian-blocks and
exp-test significance in each bin.
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the parameter space where a simulated signal is on average detected just due to
its number of events which is significantly higher than the number of background
events. The red and blue shaded areas mark the parameter spaces where the fluc-
tuation in the event sequence, due to a short period of additional signal events, is
on average strong enough to deviate significantly from the initial event sequence,
simulated with a constant rate (= background ). It is clear that for a large part of
the parameter space both criteria are fulfilled by the same signals. Thats the area
where all shaded areas overlap.
One has to keep in mind that the contour for each method just separates the pa-
rameter space in two regions. In the shaded one the probability of a detection is
larger than 0.5 and in the white one the probability is 0.5 or lower. But even in the
white area is a detection possible.
We can see that all methods detect a signal much better when we increase its rate
�sig. It leads to more events, which is useful for the standard method, and to a
sharper rate changes which is good for the time-sensitive tests. While the standard
method will also detect a signal much better when we increase its Tsig, due to the
growing number of events, the time-sensitive methods will reach their best perfor-
mance for Tsig < T , because there would be no fluctuation if the signal is active
during the whole observing duration. But this is not shown here because we just
concentrate on the parameter space of flares much shorter than the entire run, like
it would be the case for GRBs, Magnetars or some Blazars.

Compare di↵erent methods: Now we want to look closer at the regions where
the methods show di↵erences. In the pre-upgrade simulation plot, we see that the
exp-test method performs better than the other methods in a region of larger signal
rate and a short duration. So in this parameter space we detect a signal due to
the fluctuation it causes and not by its number of events. However, for small rates
and long durations the standard method is still better because the rate change is
not significant enough to be detected by the time-sensitive methods. In this state
the Bayesian-blocks method is worser than the other two methods and covers the
smallest parameter space with its 5�-contour.
If we look at the post-upgrade simulations the situation is quite di↵erent. Here

the Bayesian-blocks method performs on average better than the standard method
and the exp-test. Only in the region of high rates and short durations the exp-test
is slightly more sensitive than the Bayesian-blocks method.
One information we can also get from both plots is the width of each contour.
As explained above it describes the area between the two contour lines of the two
confidence limits. Because the width of the Bayesian-blocks is larger than the one
of the other methods in both plots, pre- und post-upgrade, we know that the spread
of the Bayesian-blocks calculation in the parameter space along the contour is wider
than for the other methods. This is due to the fact that this method will produce
di↵erent results if the signal starts in the middle of a run or at the beginning or at
the ending of a run (see sec.4.2.3 and Fig. 4.3). So if the whole event sequence stays
the same and we would just move all events that belong to the simulated signal from
the mid of a run to one of its edges we would change the output of the Bayesian-
blocks method while the other two methods won’t be a↵ected. As we don’t specify
in our simulations when the signal should start and create this value randomly this
leads to the additional spread of the Bayesian-blocks method.
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Compare di↵erent VERITAS states: After comparing the single methods
with each other, we also want to compare the detection performance for both VER-
ITAS states in general. If we just look at the actual rates the situation for all
methods appears to be much worser in the simulations of the post-upgrade state
due to the higher background rate. But this is not true because we also expect a
higher signal rate after cuts in the upgraded system. Therefore we print the magenta
lines to visualize the Crab rate after cuts measured for these two VERITAS states.
If a source has the same flux than the Crab nebula it will lead to the same rate as
the position of the left line indicates and we say that the source has a flux of 1 Crab
unit (= 1 C.U.).
If one compares just the area framed by the 1 C.U. and 2 C.U. mark (see Fig. 5.10)
one will notice that the shape of the contour of the standard method and the exp-
test is nearly the same for both VERITAS states. That means a signal with a
strength of, e.g. 1.5 C.U., needs to be active for the same fraction of the whole run
duration: Tsig/T (in this example: ca. 0.13) in both VERITAS systems to produce
enough events to deviate significantly from the background. On can conclude that
the benefit of a higher signal rate in the upgraded system got equally compensated
by an also higher background rate.
We have to mention that both rates scale di↵erently. While the signal rate �sig
increases by a factor of 1.5 between the pre-upgraded state and the post-upgrade
state, the background rate �bkg of the upgraded system is six time higher. This is
due to the lower energy threshold that has been achieved by the upgrade and the fact
that the amount of gamma-ray-like photons increases towards lower energies much
more than the photons of a VHE gamma-ray source. As the di↵erent algorithms just

Fig. 5.10: Combine all contours from di↵erent methods and di↵erent background simu-
lations and scale it to the Crab flux. Contours are taken from Fig. 5.9 (top) with the same
color code. The transparent lines mark the contours of the post-upgrade simulations.
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base on general Poisson statistics without including any special conditions that are
related to the VERITAS system, it is a rather lucky coincidence, that the five-sigma
contour-lines of the same method, but for di↵erent VERITAS states, are similar.

That we can not expect the same contour line (� = 5) for di↵erent background
simulations in general, can be explained easily on the basis of the standard Li&Ma
method. If the background rate and the overall data taking duration T is fixed, which
means the number of background events Nbkg is fixed, the number of signal events
Nsig has to stay constant as well to provide the outcome of a certain significance
value (see Equ. 4.9). In a simplification the contour of � = 5 can than be described
by Tsig = Nsig,5�/�sig. To preserver the significance value the Nsig has to change
according to Nbkg if this value varies for di↵erent background simulations. However
the relationship between both numbers is not linear. We describe now both contours
for di↵erent VERITAS states and figure out which condition has to be fulfilled that
both curves are equal:

fixed values: � = 5 ; Nbkg = �bkgT (5.4)

) Nsig = Nsig(�,�bkg, T ) (5.5)

Tsig

T
=

Nsig(�,�bkg, T )

�sigT
(5.6)

These are the equations for a certain simulation. Now we want to write down the
equation for a simulated state where �bkg,T and �sig have di↵erent values and also
scale di↵erently:

�0sig = b · �sig; �0bkg = d · �bkg; T 0 = c · T ; (5.7)

T 0
sig

T 0 =
Nsig(�,�0bkg, T

0)

�0sigT
0 =

a(�0bkg, T
0) ·Nsig(�,�bkg, T )

b�sigcT
(5.8)

only if: a(d�bkg, cT ) = bc =)
T 0
sig

T 0 =
Tsig

T
(5.9)

We introduce a scale factor a which is a non-linear function of �0bkg and T 0. One can
see that the last equation Equ. (5.9) is only true when the three scale factors b,c
and d have exactly the right values. Because there is no linear correlation between
these three scale factors the last equation will be T 0

sig/T
0
6= Tsig/T in general. In

our special case all parameters fit perfectly by accident. If an other data taking
period than 1200 sec and 1800 sec () c is di↵erent) had been chosen, both contours
wouldn’t be on top of each other in the combined plot of Fig. 5.10.
One can also obtain an equation for the scale factors b and c of the signal duration
and the signal rate in case of the exp-test method under the condition that Tsig/T
and the significance stay constant. This time the derivation is much more elaborate
why we omit showing the equations. However, the final result is that the scale fac-
tors b and c follow a non-linear function similar to a(d�bkg, cT ) in Equ. (5.9). So
the same set of scale factors that has been used for the standard Li&Ma method
(b,c and d) will also fulfill the condition of T 0

sig/T
0 = Tsig/T in case of the exp-test.
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Only the relation between Tsig and �sig is di↵erent from the standard method which
is why the di↵erent methods have di↵erently shaped curves.
The Bayesian-blocks method, however, shows a di↵erent acceptance for the di↵er-
ent VERITAS states. It is much more sensitive in the upgraded system. Its contour
intersects with the 1 C.U. line at a much lower signal duration fraction value than
in the pre-upgrade plot. Meaning that a source with a same flux (measured in C.U.)
has to be active a much shorter time fraction in the upgraded system to be detected.
It is also not possible to derive a mathematical condition for the scale factors of Tsig,
�sig, T and �bkg as we did for the standard method and the exp-test above. There
the approach was the usage of a general distribution function of the event times for
a specific set of Tsig, �sig, T and �bkg. This is not suitable for the Bayesian-blocks
method because it critically depends on the exact time of each event. Therefore we
have to rely on the Monte Carlo simulations. We can at least argue that due to a
longer data taking duration T and higher background rates also the number of time
bins M and the number of events N are larger. In case of larger M and N also the
exponent  M,N in Equ. (4.41) and Equ. (4.42) will be larger for each deviation from
a constant rate which can be seen in Fig. 5.11. At the end of the iteration process,
looping over all time bins, the result will then be also a higher likelihood ratio.

Of course if we compare the absolute signal durations Tsig the methods will always
perform better within the pre-upgraded simulations because the run duration T is

Fig. 5.11: Comparison of Bayesian-blocks algorithm applied to two di↵erent simulations
of the VERITAS state. On the left side we simulate an event sequence of the system
before the upgrade and on the right side we do the same for the post-upgrade state. The
value of �bkg is of course the rate at the signal region and not the rate of the whole field
of view. The plots show the contours of the  M,N (mcp, ncp) (see also Fig. 4.3 ) and a
gray line which represents the sequence of events with di↵erent rates. It corresponds to
the histogram below showing a simplified assumption of a transient signal at high rate
together with a constant background. A higher rate will result in a higher slope of the
gray line in the contour plot. An event sequence with no change in rate but with the same
number of events would correspond to a diagonal line from (0,0) to (M,N).
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smaller and also the number of background events. By reducing our observation time
during measurements with the upgraded system we can also improve our sensitivity
for signals with smaller durations. But to be sure we would have to re-run all our
simulations of the post-upgrade system for a duration of T = 1200 sec instead of
1800 sec, which was not done during this work.

Concluding remarks: If we assume a random sequence of background events
described by a constant rate � over a certain duration T we define a signal as a sud-
den generation of additional events with a constant rate �sig and a sudden ending
after a duration of Tsig < T . In this case we can use both time-sensitive methods to
measure such a signal. We analyzed only two di↵erent sets of fixed parameters de-
scribing the expected background for two di↵erent conditions. Much more di↵erent
conditions have to be simulated to give recommendations which method performs
best for which state of VERITAS. Here we can just say that for our definition of a
signal an exp-test, in addition to the standard method, would increase the detectable
parameter space for both VERITAS states while the Bayesian-blocks method im-
proves the detection only during post-upgrade conditions. The additional parameter
space covered only by the time-sensitive methods is the region of high signal rates
(above 1 C.U.) and short signal durations.

5.4 Summary

In this chapter we explained the implementation of the time-sensitive methods and
the features of a program which we used to test the methods. On could see that both
methods, exp-test and Bayesian-blocks, are able to detect variability of a gamma-ray
flux. Hence, those methods are also useful to detect sources that are active only for
a short period of time if the whole observation duration is much longer. Sources
with a constant high flux over the entire observation run, however, won’t lead to a
high-significant detection by those methods.
The advantage is that we don’t have to estimate the number of background events
as it is the case for the standard Li&Ma method. It is just necessary to provide
the exact times of each measured photon and its reconstructed position in the sky.
Another feature of the Bayesian-blocks method is the determination of the begin
and end of the enhanced flux phase. The disadvantage is that for the Bayesian-
blocks method we get as a result a test-statistic that depends on external conditions
like the observing duration and the number of events. We have to produce p-value
lookup tables for each di↵erent condition if we want to compare the results of the
Bayesian-blocks method with the other methods. Up to now, only tables for dura-
tions T = 1200 sec and T = 1800 sec and event numbers from N = 1 to N = 800
are produced. Much more tables have to be produced to cover all possible observ-
ing durations. Another disadvantage, valid for both methods, is the fact that the
combined analysis of several observing periods is not trivial because one has to be
sure that there are no sharp rate changes between two consecutive runs
We compared the sensitivity of both methods with the sensitivity of the standard
method under di↵erent simulated conditions. We chose some behavior that rep-
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resents two di↵erent VERITAS states, pre- and post upgrade. For the simulated
signal we assumed that it has a constant rate when its flaring and that it shows
no smooth transition between quite state and flaring state. By varying the signal
rate and its duration we found out that the time-sensitive methods improve the
detection potential of the analysis especially for short flares where the di↵erence
in flux between quite state and active state is in the order of 1 to 2 C.U.s. But
even for signals that could easily be detected by the standard method, the usage
of time-sensitive methods can still be useful to detect if, and at which time, a flare
occurs during a single run. A lot more observing conditions have to be simulated
to find out which method works best for which set of data. Especially much longer
observing periods and longer flare durations could help if one wants to study the
variability over several runs.
The simulations also revealed that the performance of the methods depend on the
external conditions like the background rate or the observing duration. A change
of the external conditions has di↵erent e↵ects on the di↵erent methods, therefore
also di↵erent VERITAS states will change the performance of each method. For the
comparison between the two states we have to use crab units instead of absolute
rates. While the standard method and the exp-test method show almost no changes
between both VERITAS states, the Bayesian-blocks method performs better in the
upgraded state. The reason for that, is the Bayesian-block algorithm. It is less
sensitive to deviations from a constant rate if the number of events in a sequence is
small (see left side of Fig. 5.11). This makes sense when we imagine a case where
only 5 events are randomly distributed over 1200 time bins. Almost every possible
outcome would then lead to a significant deviation from a constant rate if the algo-
rithm would be too sensitive. Therefore the algorithm is more sensitive when the
overall number of events is higher, which is the case for the upgraded state.
In general one can say that the exp-test method is a good choice for short flares or
repeating fluctuations. It doesn’t matter when the phase of enhanced flux starts as
long as it is fully covered by one observation run. The Bayesian blocks is a good
choice if the phase of the enhanced rate happens at the beginning or the end of a run.
In between there has to be a larger di↵erence in rate to give the same significance.

114



Chapter 6

Data analysis of variable sources

6.1 Sources from the Fermi LAT Second

Source Catalog

After the analysis of simulations we want to test the methods on data of known vari-
able high-energy gamma-ray sources. Therefore we search inside the Fermi LAT
Second Source Catalog - 2FGL catalog [Nolan et al. (2012)] for variable sources
that could have been observed with the VERITAS system and check afterwards the
VERITAS archive if that source region was actually exposed. Because we require
the sources to be at least above 50� elevation at the culmination we constrain the
possible declination range from �8� to 72�. As they should also be measurable with
the VERITAS telescopes we accept only those sources with a integral photon flux
for the 10 to 100 GeV range above 10�10 photon/cm2/s and a power law index not
steeper than 3. An additional parameter in the catalog indicates the variability of a
source. This so-called variability index is 2 times the logarithm of a likelihood ratio
which compares the null hypothesis of a flat light curve over the full 2-year catalog
interval against the alternate hypothesis where the flux is optimized for each month.
If this value exceeds 41.6 than the chance of being a steady source is less than 1%.
So, we allow only sources in our dataset with a variability index of at least 50. The
sources that meet all these criteria are mainly BL Lac type of blazars or FSRQs and
their total number is 113.
We will now search in the archival data of VERITAS how many of those sources

ra dec assoc name 1 powerlaw
index

flux 10 100
gev

flux 10 100
gev error

variability
index

source type

02 22 38.8 +43 02 09 3C 66A 1.9119 2.16964e-09 1.74735e-10 358.641205 BZB
03 19 51.7 +41 30 45 NGC 1275 2.0304 1.09574e-09 1.26610e-10 277.424103 rdg
05 21 47.8 +21 13 14 VER J0521+211 1.9290 8.43534e-10 1.16553e-10 118.715668 bzb
05 34 31.6 +22 01 11 PSR J0534+2200 2.1889 7.44553e-09 3.29898e-10 86.224548 PSR
07 19 18.6 +33 06 28 B2 0716+33 2.0632 3.28463e-10 7.17785e-11 302.965363 bzq
11 04 28.8 +38 12 48 Mkn 421 1.7706 4.23130e-09 2.45710e-10 112.768120 bzb
12 17 52.1 +30 06 33 1ES 1215+303 2.0194 3.71287e-10 7.87137e-11 96.197243 bzb
12 21 29.8 +28 14 21 W Comae 2.0186 3.87170e-10 7.80661e-11 111.495537 bzb
12 24 54.3 +21 22 48 4C +21.35 2.2314 9.38423e-10 1.19916e-10 13030.349609 BZQ
13 03 06.3 +24 35 51 MG2 J130304+2434 2.1145 1.25676e-10 4.58675e-11 207.955688 bzb
14 27 02.3 +23 47 42 PKS 1424+240 1.7784 1.58398e-09 1.54874e-10 77.722694 bzb
16 53 55.5 +39 45 47 Mkn 501 1.7377 1.24574e-09 1.34160e-10 72.325722 BZB
20 32 10.5 +40 49 41 Cyg X-3 2.4820 1.69910e-10 0.00000e+00 121.210594 HMB
22 02 49.7 +42 16 03 BL Lacertae 2.2609 2.30335e-10 5.95948e-11 266.983032 bzb

Table 6.1: List of variable high-energy gamma-ray sources covered by VERITAS under
good observing conditions (see text).
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have been covered by observations. The sources don’t have to be the primary targets
of an observation but should be near the actual pointing direction (< 2�) otherwise
too many gamma-ray events will be missed due to the limited radial acceptance.
The number of observed sources will then reduce to 29.
In the final step only good quality data is accepted, that was taken after the move-
ment of telescope T1 to its actual position in the VERITAS array. This still includes
runs of the pre-upgraded and post-upgraded state. The meaning of ”good quality”
is that all telescopes take part and that the whole system works properly during the
observation. Also the weather conditions have to be good and stable during that
time. It is really important that there prevail no external conditions causing the
measured rate to be fluctuating. A cloud moving through the field of the camera
during a run would be such a scenario which could falsely trigger the time-sensitive
methods, as those methods also react on drops in rate. Further we decide to use only
those runs with elevations of 70� or larger because the rate of incoming photons will
then be higher and we can increase our statistics. Because the production of p-value
tables for the Bayesian-blocks method is very time consuming and cpu intensive, we
only produce tables for T = 1200 sec and T = 1800 sec. Therefore we also have
to restrict the allowed duration of a single run to a value of 1200 sec or 1800 sec.
If we use a p-value table, generated for a specific duration T , during the analysis
of data runs with longer durations than T , we will underestimate the significances
calculated with the Bayesian-blocks method. If the run duration is shorter than T
we overestimate the significance. In the end we find 450 runs that fulfill all these
criteria and cover 14 of the 29 sources (see Table 6.1).

6.1.1 Measure variability at source position

Now each run is analyzed with the standard analysis software by applying the soft
spectrum cuts mentioned in subsection 5.3.1. Afterwards we use both time-sensitive
methods and create for each one their significance map. Then one can determine the
significance exactly at those bins in the map, where the sources are. As the sources
show some variability in the Fermi LAT energy range, the hope was to significantly
detect also variability in the energy range of VERITAS. But one has to keep in
mind that the variability in Fermi LAT was measured in monthly bins and with our
method we search for minute scale flux changes. A source that is in a flaring state
for more than a run will not be detected if its rate stays constant during a whole
run. The only possibility would be a sudden increase of the rate inside a run when
the flare begins and a sudden decrease in a run much later when the flare ends. A
smooth increase and decrease of the rate over several run durations won’t be de-
tected by the time-sensitive methods applied on single runs. Of course there is also
the possibility of combining several runs and apply the methods on the combined
event sequence. The challenges here will be the fact that one has to assure that there
are no rate changes between di↵erent runs due to external issues, like the weather
or the elevation of the telescopes, which can be quite di�cult if one tries to combine
runs from several nights. Another problem will be the fact that, if one wants to
use the Bayesian-blocks method, one has to generate p-value tables for those long
duration observation periods which is a very time consuming process. Due to the
several iterations in the generation code this process doesn’t scale linearly with the
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amount of time bins M , it is more like M2, and you have to do it for each individual
observation duration you want to analyze. So do those methods work for combined
run analysis - Yes! Is the application easy and well tested - No!
Some data runs contain more than one source, e.g. runs taken on the source W

Comae cover also the source 1ES 1215+303 from the list in Table 6.1. The measured
significance of each source in each run will be plotted in a common histogram, one
for the exp-test and one for the Bayesian-blocks significance values. The idea is not
to study each source separately but to examine more in general if the methods show
a tendency towards positive significances. The result can be seen in Fig. 6.1.
The distribution for both methods can be approximated by a standard normal dis-
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Fig. 6.1: Distribution of significance measurements at known source positions which we
get from the Fermi LAT Second Source Catalog. The red curve is the gaussian fit to the
distribution and the resulting fit-parameters are shown in the box in the upper right of
each plot. The histogram on top presents the significance measurements of the exp-test
while the bottom histogram shows the result of the Bayesian-blocks method.
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tribution. The di↵erence of the entries between the histograms of both methods is
due the fact that the exp-test method requires at least 3 events at the bin of the
source position to calculate a significance value while the Bayesian-blocks methods
works already for 2 events. So if some source positions are close to the edge of the
radial acceptance the number of events per bin can be less than 3 and in this case
only the Bayesian-blocks method provides a result.

So in the end by looking at the histograms we cannot detect a tendency towards
positive significance measurements for both methods. This leads to the conclusion
that the high-energy gamma-ray emissions measured by VERITAS for the 14 di↵er-
ent sources in Table 6.1 don’t show flux changes during single runs, as long as we
assume parameters for the flux changes like the ones inside the shaded areas (red
and blue) of the contour plots in Fig. 5.9. The duration of the increased flux period
will then be described by the signal duration parameter in the contour plot and the
di↵erence between the increased rate during this period and the lower rate in the
constant emission phase during the rest of the run is then represented by the signal
rate parameter. The rate during the time of the constant emission phase will then
correspond to the background rate in the simulations. Roughly saying none of the
tested data runs show enhanced fluxes (with a flux change of more than the Crab
flux) over time periods of ⇠2 to ⇠15 min length. An increased flux over a duration
as long as a data run (20 min or 30 min) can not be detected by the advanced
methods, hence it is also not possible to exclude long flares in timescales of hours
and days.
But we have to be a little bit careful with the conclusion concerning the strong
high-energy gamma-ray emitters in our data set e.g. Mrk 421, Mrk 501 and the
Crab Nebula around the pulsar. Their rates during their constant emission phase
are much higher than the rates of the background simulated during the generation
of the contour plots: 0.003 Hz (pre-upgrade) and 0.018 Hz (post-upgrade). For such
a case we don’t know exactly the size of the parameter space for which the methods
will be sensitive. It tends to be smaller than the ones in Fig. 5.9 and so the excluded
time periods are smaller than 15 min and larger than 2 min and/or the flux change
is larger than the Crab flux.

An additional study of light curves taken simultaneously at other wavelengths for
these objects can help to estimate the variability expected in the VHE range. Based
on this information it would be possible to set an upper flux limit for the flares.

6.1.2 Search in the whole sky map

However the situation is di↵erent when we search in the whole sky map of a run for
variability signals. Here the background rate is similar to the one in the simulations.
The hope is to find unknown sources which produce short but strong flares in a way
that the time-sensitive methods are able to detect them within a run, while the
standard method su↵ers from the small number of events due to the short duration
and is not able to detect the source in one run. By looking at the contour plots
in Fig. 5.9 the parameters for such flares are in the blue and red shaded areas not
covered by the black ones.
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So we start to search for the highest significance that was measured with one
of the time-sensitive methods in the whole skymap of each run. In Fig. 6.2 and
Fig. 6.3 we show the significance maps of both methods for all those runs where
the highest significance exceeds 5� without taking into account trials. The stars
mark the positions of sources from the catalog covered by that run and the center
of the colored rings mark the bin with the highest significance. If the ring is purple
it means that the exp-test calculated a significance larger than 5� for that bin and
if it is magenta than the Bayesian-blocks measurement exceed 5�. For comparison
reasons we print the ring in both significance maps. If both rings are on top of each
other than both methods found variability for the same bin. Next to the ring we
print also the position of that bin in right ascension and declination but only in the
map of that method that detected the bin with a significance of more than 5�.
In the end we found 15 runs in the list of 450 runs that contain a bin with a
significance above 5� measured by one of the time-sensitive methods. All of those
bins have been detected solely by one method and could not be confirmed by the
other method. For nearly all runs it was the exp-test method that measures a
significance above 5�. Only in the last two runs in Fig. 6.3 the Bayesian-block
method found a bin with a high enough significance. This makes sense when we
realize that the last three runs have been taken during the upgraded state and when
we remember the contour plots in Fig. 5.9. For the post-upgrade state it is the
Bayesian-blocks method that performs in general a little bit better than the exp-
test method while during the pre-upgrade phase the exp-test method works better.

We started to compare the positions of the bins with the sources found in the
0.1-2.4 keV x-ray energy band derived from the all-sky survey performed during the
first half year of the ROSAT [Voges et al. (1999)]. As those sources can show some
sharp increases in rate it could be potentially behave the same way in the gamma-ray
regime and we could detect a flux change within a VERITAS run. Unfortunately,
none of the sources coincide with the detected bin positions.
Finally we have to take into account the trial factor as no bin positions was known
before due to other experiments. Our probability of finding a signal somewhere in
the map is of course much larger than if we just look at a predefined bin. If we
want to declare a detection of a signal somewhere in the map with a significance
of at least 5� the significance of the single bin has to be larger to compensate for
the additional possibilities of accepting a signal in any other bin. So we have to
determine the significance level ↵bin that a p-value of a single bin has to come under
to ensure that the global probability P>1 of finding at least one such a bin in the
whole map by chance is the same or lower as the ↵-value corresponding to 5�:
↵ ⇡ 2.87 · 10�7. The calculation is done as shown in the following equation where
we start with the probability P0 of not detecting a signal at a significance level of
↵bin in any bin:

P0 = (1� ↵bin)
N

) P>1 = 1� P0 = 1� (1� ↵bin)
N (6.1)

P>1 6 ↵ ) ↵bin(N) 6 1� (1� ↵)
1
N (6.2)

In this example N is the number of bins where we try to find a signal. Each bin will
then represent one trial, which is true if there is no correlation between di↵erent bins
and their results are independent. Of course this is not true in our case where we
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Fig. 6.3: Significance maps of 6 di↵erent runs calculated with exp-test method (left) and
with Bayesian-blocks method (right). Continuation of Fig. 6.2.

use correlated maps as explained in section A.1. If we want to estimate the possible
range of ↵bin for a single bin we will look at two extrema:

• each bin (= 0.01(�)2) inside the whole sky map area (2�)2 · ⇡ is a trial
! Nmax = (2�)2 · ⇡/(0.01�)2 = 125664

• all bins inside the smoothing area (= ✓2) around the highest-significant bin
are taken as the same trail ! Nmin = (2�)2/✓2 = 200

So the true value of ↵bin must be in between ↵bin(Nmin) ⇡ 1.435·10�9 and ↵bin(Nmax) ⇡
2.284 · 10�12. If we assume a normal distribution the corresponding significance val-
ues are 5.94� and 6.92� respectively.
From this we can conclude that the significance in one of the bins has to be at least
larger than 5.94� to be a significant detection of a transient source in the whole run.
As this is not observed in our dataset we have to assume that all the bins detected
in the 15 runs are just random fluctuations of the background. Hence, no unknown
sources with strong ( & 1 C.U. ) but short flares ( . 2 min) has been detected inside
the field of view during these runs.
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6.2. ANALYSIS OF MAKARIAN 421 FLARE IN 2010

6.2 Analysis of Makarian 421 Flare in 2010

The test on variable 2FGL sources in the section above didn’t lead to any detection.
The reason could be that there is no variability in the runs we analyzed or the
variability is in a range where the methods are not sensitive enough because the flux
change is too small ( . 1 C.U. ), too smooth ( . 0.25 C.U./min) or the duration too
short ( . 2 min). We will therefore look inside the data of the Markarian 421 Flare
observed with VERITAS on February 17, 2010. This set of runs was not included
in the previous 2FGL source analysis because T1 was not operating during the flare
which was a exclusion criterium.
The advantage of testing the methods on Markarin 421 is the fact that we know that
there is variability in the data and also the rates are high enough to provide good
statistics. The important fact is how fast and how much the rate changes. If the
flux changes continuously over several run periods it is di�cult to detect variability.
The list of the 12 runs that have been analyzed with the standard analysis software
and the corresponding results after the application of soft cuts is shown in Table 6.2.

Run Nr. El. Az. Duration standard
Significance

exp-test
Significance

BayesBl.
Significance

Rates Background

[deg] [deg] [min] [sigma] [sigma] [sigma] [gamma/min] [events/min]
50099 75 56 20.05 73.9 -1.748 1.511 74.73 ± 1.94 0.88
50100 79 51 20.05 76.1 -1.651 -0.653 74.78 ± 1.94 0.79
50101 81 34 20.05 82.7 0.044 2.782 88.34 ± 2.11 0.94
50102 83 -2 20.05 64.8 -0.366 3.488 55.92 ± 1.68 0.79
50103 81 -31 30.07 79.1 -0.492 0.311 58.04 ± 1.40 0.79
50104 77 -57 30.07 82.0 0.188 2.612 59.13 ± 1.41 0.77
50105 71 -63 30.07 70.4 -2.223 -0.788 45.21 ± 1.24 0.79
50106 64 -66 30.07 60.5 -0.584 1.464 33.60 ± 1.07 0.62
50107 58 -66 30.07 67.6 1.508 -0.45 41.98 ± 1.19 0.52
50108 52 -67 30.07 66.0 1.042 0.665 37.87 ± 1.13 0.44
50109 47 -66 30.07 67.9 -0.350 0.637 38.95 ± 1.14 0.33
50110 41 -62 20.40 48.9 -0.855 3.033 30.14 ± 1.22 0.30

Table 6.2: List of VERITAS runs that measured the Flare of Mrk 421 on February
17, 2010. The significance was calculated by the standard Li&Ma method, the exp-test
method and the Bayesian-blocks method

We also analyzed all runs with both time-sensitive methods like we did for the 2FGL
sources and add the significance measurements to the table. Additionally we plot
the distribution of their significance measurements in the figure 6.4. We can see that
the exp-test results exhibits no signs of a general high variability. In contrary it even
tends towards negative values which leads to the conclusion that the fluctations at
the source position are even less than expected from normal background. The usage
of the Bayesian-blocks method leads to a wider distribution of significance values
but tends to be more positive in general. However, no method detected variability
at the source position with a significance of more than 5�.
By looking at the table we can see that there is a sudden drop in the rates between

run 50101 and 50102. We can also see that the significance for variability is quite
high compared to all other runs. For a better visualization of the variability of the
source we plot the rates in 4-minute bins over the whole duration of all combined
runs (see Fig. 6.5). The rates have been calculate exactly at the bin of the position
of Mrk421 under the usage of correlated maps. The size of the correlation region is
0.02(�) by which we can guarantee to take into account 68% of the spatial spread
of the source gamma-rays due to our limited angular resolution. With the two red
vertical lines we mark the duration of both runs.
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Fig. 6.4: Distribution of significance measurements at the center positions of the maps
which we get by analyzing twelve consecutive Mrk 421 runs. The histogram on top presents
the significance measurements of the exp-test while the bottom histogram shows the result
of the Bayesian-blocks method.
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Fig. 6.5: Rate per minute of all reconstructed gamma-rays of Mrk421 during the flare on
February 17, 2010 (soft spectrum cuts). Each value represents the average over 4 minutes.
The red lines mark the beginning and the end of run 50101 and of run 50102.
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One can recognize that the di↵erence �� between several data points of these runs
is quite large compared to all other data points during the rest of the day. If we
pretend that the additional rate of gamma-rays represents a flaring signal on top of
the constant Mrk421 rate we can say that �� = �sig. Lets take run 50101 as an
example: �� ⇡ 18�/min, which is the same as �sig = 0.3 Hz. In case of low back-
ground rates, like during our pre-upgrade simulations (0.003 Hz), such a variability
should be detectable by both algorithms if the flare lasts for at least 1/8 of a full
run (see left contour plot in Fig. 5.9), which is true for run 50101. Unfortunately
our background rate is much higher in our example here because the low flux state
of Mrk 421 represents the background rate which is close to 68 �/min (⇡ 1 Hz).
This is the reason why the methods are not sensitive enough.

But as we have seen in Table 6.2, the Bayesian-blocks significance measurement for
the second and third run give at least a hint to variability. We will therefore start
to search in the whole skymap of each method for the highest significant bin whose
value exceeds 5� like we did during the analysis of the 2FGL data. We found exactly
one run for which the Bayesian-block method detected (pre-trials) a bin as one can
see in Fig. 6.6. It is the run with the strong variability at the source position: 50101.
As it was mentioned before, the measured significance, however, is still too small
to claim a detection if the trails are taken into account. Since we know already
that our data is variable in this run, the question is, why does the method see such
an excess with an o↵set from the real source while the standard method measures
the largest significance exactly at the source position? The position of the highest
significant bin, that we found, is inside the smoothing radius of the correlated map.
Hence also this bin will be influenced by the fluctuations in the source bin.
For a better understanding of the di↵erence between these bins we will compare the
temporal events sequence of both bins. For comparison reasons we will also look at
the event sequence of a bin with a distance to the source that is similar but with a
significance much lower (see circle in bottom plot of Fig. 6.6). We decided to plot
the number of events versus the time and choose a bin size of 100 seconds. This
way it is easier to recognize the di↵erences in the evolution of the rate. Addition-
ally we also print the exponent  N,M [Equ. (4.42)] which is calculated during the
Bayesian-blocks process for each time bin ( = each second) of the run to determine
the final test statistic value in a subsequent step. The resulting graphs look similar
to Fig. 5.6 and are presented in Fig. 6.7. Before we start to compare the output,
that was measured at the three di↵erent bin positions, we have to remind how the
test statistic of the Bayesian-blocks methods is calculated. First we calculate e N,M

for each time bin and add up the results. Then we divide this sum by the number of
time bins and build the logarithm of this result. So in the end the sum of all e N,M

has to be much larger than the number of bins to provide a large test-statistic which
means that the blue  N,M-curve should reach large values for a reasonable amount
of time.
If we look again at the figures in the section above where we compare the Bayesian-
blocks results for di↵erent VERITAS states (see Fig. 5.11), we can estimate for
which distribution of events we would expect large  N,M-values. For example if the
grey curve, which represents the integral over the time of the events found in a run,
lies on one of the contour lines in Fig. 5.11 we measure a constant  N,M-value al-
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Fig. 6.6: TOP: Significance maps of Mrk 421 run 50101 calculated with Bayesian-blocks
method (left) and with the standard Li&Ma method (right). The position is given in right
ascension (x-axis) and declination (y-axis). The star in each map mark the positions of
Mrk 421. The colored rings mark the region around the bin with the highest significance
(at least > 5�) detected by the Bayesian-blocks method. The size of the ring represents
the uncertainty of the position ( ✓ = 0.14�) respectively the size of the correlation
BOTTOM: Zoom of significance maps. Maps are in camera coordinates with the Mrk 421
source in the center at x = 0� and y = 0� (star). The cross marks the bin with the highest
significance above 5� and the circle marks a bin with a similar distance to the center but
with a lower significance. (Attention: Due to the large uncertainty no underlying spatial
structure is revealed by the plot on the left side. Reconstructed Mrk 421 events with
di↵erent time stamps got spread nearly over the whole zoomed sector, causing di↵erent
event sequences in each bin just by accident. The purpose of this figure is just to illustrate
at which bins we were looking more closely in Fig. 6.7)

most the entire run. An integral function with such a behavior belongs to an event
distribution with an event rate that is large at the beginning of a run and decreases
with a constant slope towards the end of the run (or vice versa). The modulus of
this slope is the crucial point. If it is small, the integral (grey curve) will lie on
top of a contour line that is close to the diagonal of Fig. 5.11 representing negative
 N,M-values. If the slope modulus is large, the integral curve will lie on top of a
contour that bends much more and represents large  N,M-values. In the extreme
case when there is just a sharp cut-o↵ then the integral curve will have a kink. In
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Fig. 6.7: Number of events per time binned in 100sec wide bins (grey) and the exponent
 N,M [Equ. (4.42)] calculated during the Bayesian-blocks process for each second of the
run (blue) to determine the final test statistic value in a subsequent step. The vertical red
line marks the point where the separation of the data into two blocks with two di↵erent
average rates is most likely ( = blue curve reaches maximum). The three di↵erent figures
show the events measured at three di↵erent positions in the left skymap of Fig. 6.6, which
is the Bayesian-blocks skymap of run 50101
TOP: events from the bin with low significance, marked with a circle in the skymap.
MIDDLE: events from the bin at the source position of Mrk 421, marked with a star.
BOTTOM: events from the bin with maximum significance, marked with a cross.
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this case the grey curve intersects with several contour lines and hits the highest
possible contour ( = highest possible  N,M-value) exactly at the time of the sharp
rate change.
So in the end one can say that a large di↵erence between the rate at the beginning
and at the end of a run, together with a monotone increase or decrease, will result
in a high significance when using the Bayesian-blocks method. A sharp cut during
a run will lead to a larger significance result than smooth rate changes, as long as
the overall number of events, the rates at the beginning and the rates at the end are
the same.

Back to the comparison of our three di↵erent event sequences. In the first example
on top of Fig. 6.7 we can see that the slope of the rate change is pretty flat which
leads to a small significance. In the graph in the middle the slope is much steeper
but not a sharp cut-o↵ as in the example on the bottom of the figure. Here the
fast change of the rates is big enough to lead to a significance value of 5�. As
an additional feature this sharp cut-o↵ helps to find a changepoint in the data as
the cumulative integral of such a event distribution reaches the largest contour lines
( = highest  N,M-value) only once, which is than the most probable separation point.

After this short excursion, what can we conclude about the variability detected by
the Bayesian-blocks method in the vicinity of the source position? By looking at
the three examples, we can see that the source bin, and also the bins around that
bin, show variability but the methods are just not sensitive enough for these slowly
changing rates. It was just a lucky coincidence that the events in the bin, with
the large significance measurement, have been distributed in a way the Bayesian-
blocks method is able to detect a significant rate change despite the large amount of
background events. This makes sense as the trial factor wasn’t taken into account
here, which is necessary when searching for a signal in more than one bin. Therefore
the required significance in a single bin would have to be larger than 5� for claiming
a detection.
The exp-test method didn’t detect any variability. Not even inside the area around
the source position. This method performs better on strong flares or repeating
fluctuations which is not found in this set of data.

6.3 Analysis of GRB data

In a final approach we test the time-sensitive methods with some GRB data obtained
by VERITAS before the upgrade. For GRB observations we expect a behavior that
is close to our simulations described above. So the background rate is low at the
source position and the signal should be active just for a short period of time before
its rate decreases very fast. In Table 6.3 we present the list of GRBs we will use for
this test.
Each GRB is analyzed with the standard VERITAS analysis software by combining
all good quality runs that contain the respective GRB. The same soft cuts that were
used for the analysis of the other datasets before are used again. In the last column
the 99% upper limit of the flux of each GRB is shown. These values have to be
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Name RA(J2000)i DEC(J2000)i Delay T
90

T
obs

Discovery Pos.Error FluxUL

[deg] [deg] [sec] [sec] [min] [ph/cm2/s]
GRB091123B 337.86 13.31 221 15 ± 2 60.1 Fermi GBM 4.72 deg 9.45e-12
GRB100205A 141.39 31.74 330 26 ± 4 140.3 Swift 1.7 arcsec 5.78e-12
GRB100513A 169.61 3.63 4789 84 ± 21 100.2 Swift 0.3 arcsec 3.76e-12
GRB100519A 191.18 56.87 1833 62 ± 4 20.1 Fermi GBM 2.9 deg 4.83e-11
GRB110130A 110.75 34.72 326 47 ± 2 42.1 Fermi GBM 7.43 deg 6.08e-12
GRB110522A 235.32 53.16 125 28 ± 3 25.1 Fermi GBM 6.9 deg 8.84e-12

i
Location of Fermi GRBs is taken from the latest GBM Ground Position GCN Notice, broadcasted few seconds after the trigger

Table 6.3: small subset of GRBs observed with VERITAS. Values in the T90 column
define the time during which 90% of the GRBs photons got measured by the satellite that
discovered it.

calculated because no observation lead to a significant detection.

6.3.1 Satellite data of keV emission

All these GRBs were discovered either by the Burst Alert Telescope (BAT) or by
the Gamma Burst Monitor (GBM). BAT belongs to the instruments of the Swift
satellite observatory [Gehrels et al. (2004)]. It is a large field-of-view (FOV = 2.0
sr) coded-aperture telescope developed to detect transient sources like GRBs over
a large fraction of the sky with an accuracy of 1-3 arcmin. Hence the whole satel-
lite with its additional narrow-FOV instruments (the Ultraviolet/Optical Telescope
- UVOT, and the X-ray Telescope - XRT ) is able to slew exactly to the source po-
sition in case follow-up observations are required. BAT covers an energy range of
15 to 150 keV for imaging while it is able to reach 500 keV for rate measurements
over the whole FOV. Its sensitivity is high enough to trigger the GRB due to the
rapid increase of the measured photon rates and also to determine its position. But
it is necessary to use the XRT with its small FOV (23.6 ⇥ 23.6 arcmin) and higher
sensitivity in the soft X-ray regime (0.2-10 keV) to measure the decreasing flux also
during the afterglow phase. More informations about BAT and XRT can be found
in [Barthelmy et al. (2005)] and [Burrows et al. (2004)].
The GBM is part of the Fermi satellite observatory. It consists of 12 Sodium Iodide
(NaI) and 2 Bismuth Germanate (BGO) scintillation detectors mounted around the
Large Area Telescope (LAT) [Atwood et al. (2009)], which is the principal scientific
instrument on the spacecraft. The NaI detectors provide spectral coverage from
about 8 keV to 1 MeV and have a cosine angular response. Together with their
small FOVs and the di↵erent pointing directions they are used to determine the
burst location by taking into account the relative rates. The accuracy, however, is
much worser than the one achieved by the Swift instruments. The two BGO de-
tectors are attached on opposite sides of the satellite and cover the energy range of
⇠200 keV to ⇠40 MeV. All 14 detectors combined provide a nearly full sky coverage
with a FOV of ⇠ 9.5 sr. For further informations about GBM see [Meegan et al.
(2009)]

Before the results of the time sensitive analysis methods are presented it is interesting
to look at the characteristics of each GRB in the X-ray and soft gamma-ray regime.
GRB 100205A and GRB 100513A are detected and observed solely by the Swift
observatory. On the left side of Fig. 6.8 the raw BAT rates of those two GRBs
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are shown. One can see how the rates exceed the continuous background which
changes according to the position and pointing direction of the satellite. Because
these variations occur in general on much longer time scales than the duration of
the GRB prompt emission, the trigger algorithm just has to look for a steep increase
in rate. This increase is larger for GRB 100513A in comparison to GRB 100205A.
Also the duration of GRB 100513A is much longer than the one of GRB 100205A.
In fact it is the longest duration of all six analyzed GRBs. The exact T90 times of
each GRB are listed in Table 6.3. The light curves of both GRBs also reveal more
than just one peak with a faster rise and smaller decline which indicates that several
internal shocks occur at the GRBs [Kobayashi et al. (1997)]. Further information
about the GRBs and its afterglow are delivered by the sensitive XRT instrument.
The combined light curve of BAT and XRT data is shown for each Swift GRB on
the right side of Fig. 6.8. In these light curves the raw count rates already have
been converted into the flux densities at 10 keV. By comparing it with the Crab
flux density of ⇠ 0,5 mJy at 10 keV [Toor et al. (1974)] it is visible that especially
the flux density of GRB 100513A is between 0,5 and 1,5 Crab units during the first
100 seconds. If there is such a behavior also in the VERITAS energy range, these
objects would be close to the detectable parameter space of the analysis methods
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Fig. 6.8: Light curves of the GRBs detected by Swift BAT. On the left side the raw count
rates are displayed together with a dashed red line, that represents the background. The
data points during the burst have smaller �t. As there is also XRT data available, the
combined light curves (at 10 keV) are shown on the right side, where the rates already
have been converted into flux density. The BAT data had to be extrapolated towards the
low energy of 10 keV
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Fig. 6.9: Light curves of the GRBs detected by Fermi GBM. Only the rates of the GBM
NaI detectors with the brightest signal are shown. The dashed red line represents the
background and the numbers in the upper right corner mark the accepted energy range.
The signal flux density is averaged over the duration of the prompt emission.

explained above.
Also some of the GBM detected GRBs produce flux densities during their prompt
emission that are comparable to the crab flux. Their raw GBM count rates are
presented in Fig. 6.9. Due to the same reasons explained before the background
rate is also not a constant. One can clearly see that GRB 100519A is the strongest
of all four GBM bursts. The striking features of its light curve are the 3 peaks
and a slowly decaying tail. Its flux density at 10 keV exceeds the the one of Crab.
Also its duration with more than 100 sec is quite long compared to the other GRBs
which makes him an good object to evaluate the new analysis methods. Another
candidate is GRB 110130A. Not as powerful and long as GRB 100519A but with an
interesting light curve, exposing two similar shaped peaks of the same size.

6.3.2 Flares in GRB afterglow

Even if all these GRBs belong to the category of long GRBs their T90 durations
are just in a range of 10 to 80 seconds. By looking at the delay of each VERITAS
observation (see Table 6.3) one can see that the prompt emission of the GRB was
missed by several minutes in all observations. The delay td is the time until the
VERITAS telescopes point at the position of the GRB after it was detected by one
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of the satellite experiments. But even if there was no observation during the prompt
emission of the GRB it is still possible to measure VHE photons that could have
been produced in the afterglow phase, which is observed by VERITAS for at least
20 min or longer (see Table 6.3).
In the combined light curve of GRB 100205A and GRB 100513A in Fig. 6.8, for ex-
ample, one is able to discover several peaks at times beyond ⇠ 100 seconds. These
X-ray flares, superimposed on the underlying afterglow and sometimes also on the
tail of the prompt emission, are quite common. According to [Chincarini et al.
(2010)] ⇠ 33 % of all detected GRB afterglows exhibit X-ray flares with an average
ratio of flare width wX to peak time tp of ⇠ 0.23. They can be produced by late inter-
nal shocks which requires the central engine to be active for time scales much longer
than the GRB event [Zhang (2007)]. Also a refreshed external shock is a possible
explanation. At least for flares with wX/tp > 0, 25 [Ioka et al. (2005), Chincarini
et al. (2010)]. Such a flare is seen in the afterglow of GRB 100205A and its peak
time of tp ⇠ 370 sec is covered by the VERITAS observation (td = 330 sec, see
Table 6.3).
The high-energy electrons, accelerated in the forward shock during the afterglow,
can interact with the photons of the simultaneous X-ray flares via inverse Comp-
ton scattering (IC), which results in the formation of GeV-TeV flares [Wang et al.
(2006)]. Also a synchrotron self-Compton (SSC) process in the external shock is
possible to produce such VHE flares during the afterglow. Depending on which
procedure is responsible for the VHE emission the light curve of the GeV-TeV flare
either correlates with that of the X-ray flare (SSC model) or will become smoother
and longer instead ( IC at forward shock).
The widths w of the X-ray flares in our examples here are between 50 and 200 sec. A
corresponding VHE flare with the same or even longer duration becomes detectable
by the above-mentioned analysis methods if its flux is higher than 1 C.U. in the
GeV-TeV regime. According to [Wang et al. (2006)] a broken power law with a
peak in the GeV range is assumed for the spectrum of the IC emission. By choos-
ing the normalization in a way that this spectrum exceeds the Crab flux density
(FCrab;0,1�0,4TeV = 1, 6 · 10�10 erg cm�1s�1) in the energy range of 0,1 - 0,4 TeV,
one can calculate the flux density FIC of the whole IC process. As a result we get
FIC ⇡ 2 · 10�9 erg cm�1s�1. This value is in the same range as the IC flux density
estimated for the afterglow flare of GRB 050502B in [Wang et al. (2006)]. If we
assume the same parameters, the corresponding initial energy of a GRB should be
E ⇡ 2 · 1052 ergs to produce a Crab-like flux density in the VERITAS energy range.

Hence, GeV-TeV flares during the afterglow phase and their detections with
VERITAS are possible. In case of strong flares (flux > 1.25 C.U.), the detection
sensitivity is improved by the time-sensitive analysis methods. Now, even flares
with durations down to ⇠ 100 sec are detectable, if the flux & 1.75 C.U. Since the
average delay of a VERITAS GRB observation is td ⇡ 200 sec, most of all possi-
bly observable VHE afterglow flares at peak times of tp > td should exhibit a flare
width of wVHE & 100 sec. This is because wVHE > wX ⇡ 0.23tp. Therefore the im-
proved analysis methods are in particular useful for the delayed GRB observations
performed by IACTs.
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6.3.3 VERITAS analysis

To search for such flare occurrences all GRB runs are analyzed separately. These
runs and their durations are listed in Tab.6.4. In addition to the standard signifi-
cance calculation we also apply the time-sensitive methods to look for fluctuations
in the data. The data results of the three di↵erent methods are shown in the table
as well. At least for those runs for which it was possible to calculate the significance
due to a su�cient amount of events at the expected position of the GRB. For a bet-
ter visualization we plot the distribution of the significance values of both methods
in two separate histograms (Fig. 6.10).

One can see that no significant variability at the GRB positions was measured. Both
distributions are in agreement with measurements of background that can be de-
scribed by a constant rate. Just the exp-test method shows a small shift towards
negative significance values.
Concerning the GRB 100513A it is also obvious that we missed the first two X-ray
flares, and some possibly correlated VHE flares, due to the long delay of more than
4000 sec. Also its large redshift of z = 4.8 [Cenko (2005)] can be the reason for the
non-detection as the VHE flux could get attenuated by the extragalactic background
light.
For GRB 100205A at least a part of the 200 sec long X-ray flare is covered by the
VERITAS observation.
In case of the GBM detected GRBs it is not clear if there had been any X-ray flares,
because no sensitive X-ray measurement was executed during the afterglow phase.
Since we expect in general durations of & 100 sec for flares happening during the
delayed VERITAS observation, the non-detection of VHE flares for each GRB is
likely due to a flux smaller than 2 C.U. in the VERITAS energy range. This can
have various reasons. In case of an IC scattering at the forward shock, for example,
either the X-ray flux is to low to support e�cient electron cooling, the VHE flare

Run Nr. GRB El. Az. Duration standard
Significance

exp-test
Significance

BayesBl.
Significance

Rates

[deg] [deg] [min] [sigma] [sigma] [sigma] [gamma/min]
48563 GRB091123B 71.00 -162.00 20.05 0.60 -0.455 0.241 0.16±0.25
48564 GRB091123B 68.00 -149.00 20.05 0.90 -1.024 0.318 0.21±0.24
48565 GRB091123B 66.00 -138.00 20.05 1.10 1.511 2.134 0.26±0.24
49789 GRB100205A 49.00 75.00 20.05 0.50 -0.500 -0.012 0.09±0.18
49790 GRB100205A 53.00 78.00 20.05 -2.30 -1.487 -2.463 -0.34±0.12
49791 GRB100205A 57.00 79.00 20.05 -0.20 -0.443 0.035 -0.04±0.18
49794 GRB100205A 66.00 82.00 20.05 1.90 1.263 0.664 0.45±0.27
49795 GRB100205A 70.00 82.00 20.05 1.70 -1.063 0.142 0.41±0.27
49796 GRB100205A 75.00 87.00 20.05 -1.70 -0.076 0.022 -0.39±0.20
49797 GRB100205A 79.00 86.00 20.05 0.20 -0.723 0.639 0.05±0.24
51322 GRB100513A 62.00 -170.00 20.05 -1.90 -1.393 -2.112 -0.36±0.17
51323 GRB100513A 59.00 -160.00 20.05 -0.60 -0.065 -0.640 -0.12±0.19
51324 GRB100513A 58.00 -151.00 20.05 -1.40 0.555 0.661 -0.24±0.15
51325 GRB100513A 55.00 -140.00 20.05 0.10 0.247 -1.359 0.02±0.17
51326 GRB100513A 52.00 -133.00 20.05 -0.40 -0.855 0.360 -0.07±0.18
51461 GRB100519A 61.00 -20.00 20.05 1.70 -1.118 -0.757 0.31±0.21
54686 GRB110130A 83.00 50.00 20.05 -0.30 -0.536 -0.439 -0.07±0.26
54687 GRB110130A 87.00 11.00 20.05 -3.00 0.659 -0.264 -0.74±0.20
54688 GRB110130A 86.00 -14.00 2.05 -1.00 -0.73±0.56
56737 GRB110522A 66.00 17.00 20.03 -0.90 0.472 0.354 -0.16±0.17
56738 GRB110522A 68.00 13.00 5.02 -0.60 -0.967 1.485 -0.24±0.39

Table 6.4: List of all good quality VERITAS runs on six chosen GRBs. Significances
have been measured run-wise with the standard, exp-test and Bayesian-blocks method.
For run 54688 we can not calculate the significance for the time-sensitive methods because
there are less than two events detected at the source position due to the short duration of
the run.
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Fig. 6.10: Distribution of significance measurements at the center positions
of the maps which we get by analyzing 20 GRB runs. The histogram on
top presents the significance measurements of the exp-test while the bottom
histogram shows the result of the Bayesian-blocks method.

could got smeared out by the angular dispersion of the afterglow or the Lorentz
factor of the accelerated electrons is too low to shift the IC spectrum towards the
GeV range.
Also the error on the source position is quite large for the GBM detected GRBs
(see Table 6.3). But as mentioned above, it is still possible with the time sensitive
methods to search for a flare inside the whole observed sky map. However, we then
have to take the trails into account, so we won’t report a detection if the significance
is lower than 5.9�. Unfortunately we even don’t see an excess of more than 5� in
all the runs.

6.4 Summary

The tests of the time sensitive methods applied on data of variable sources revealed
no intra-run fluctuations, neither at the source position nor somewhere in the field-
of-view. At least no fluctuations distinctive enough to be detected by those methods.
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Of course for some Mrk421 runs variability is even visible by looking at the rates
plotted versus the time. But we can also see that in almost every run the change
from a high-flux state to a low flux-state (or vice-versa) happens quite smoothly. If
there are more sharp cut-o↵s during a run with larger variations in the rate it is
possible to detect such variability with those methods. Unfortunately none of the
analyzed sources exhibit such a behavior.
Especially the test on the 450 runs of mainly AGN observations revealed, that there
seems to be no such sharp and strong rate changes during a run, that could trigger
a detection by these two methods. This is in consistence with the theoretical models
where the VHE emission is believed to originate from plasma blobs ejected along the
jets of an AGN. Too short raise and decay times would imply much larger Doppler
factors or much smaller radii of the blobs when compared to the respective values
inferred on the basis of observations made at other wavelengths. However, such
short time variability of AGNs can not completely be excluded for those objects.
By choosing only a subset of all available VERITAS AGN data, it is highly probable
that such flaring periods just have been missed.
In contrary to the general AGN models, such short temporal variability is typical for
GRBs. Not only during the prompt emission but also during the afterglow phase one
can expect flares of several minutes in di↵erent energy bands, even up to the GeV-
TeV range. Therefore we analyzed 6 random GRBs and had a look at their X-ray
light curves measured by the satellite experiments. Due to the delayed observation
we could take VERITAS data only during the afterglow phase. The X-ray data
of the Swift-detected GRBs revealed several flares during this time. However no
correlated VHE flares have been discovered by the time sensitive analysis methods.
With the additional information of the flare width in X-ray and the theoretical
expectations based on this, one is able to constrain the flux of the non-detected
VHE flares. Hence, the possible flares during the observed afterglow periods of the
Swift GRBs, with expected flare durations of > 200 sec, are not supposed to exceed
1.25 C.U (⇡ 3, 7 · 10�10 erg cm�1s�1 [0,1;10 TeV]).
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Chapter 7

Conclusion and Outlook

In gamma-ray astronomy and in astronomy in general many of the observed sources
show a transient behavior. Depending on the source type there are various reasons
why its flux is variable. Under some circumstances these variability can be very
short, in the order of seconds to minutes. Typical sources are gamma-ray bursts
(GRBs), active galactic nuclei (AGNs), X-ray binaries and magnetars. While in
some wavelength ranges the detection of such short flares is easy, it can be quite
di�cult in the very high-energetic (VHE) range (& 85 GeV) in which imaging at-
mospheric Cherenkov telescopes (IACTs) like VERITAS are operating. This is due
to the large background and the comparable low signal rates.
This thesis discussed the investigation of advanced statistical methods, which are
specialized to find deviations of a constant rate in sequences of gamma-ray like events
measured with VERITAS. The name of these methods are exp-test and Bayesian-
blocks. Especially their performances in case of very short and abrupt rate changes
have been tested with Monte Carlo (MC) simulations. Further, the methods have
been also applied on data of GRBs and AGNs observed with VERITAS.

7.1 Comparison of di↵erent methods

One goal of this work was to determine, if the advanced methods could improve
the detection of weak sources that exceed the constant background only for a short
amount of time (⇠ minutes) during a much longer period of data taking (a so-called
run). Typical durations of a VERITAS run (Trun) are 20 or 30 minutes. If a sig-
nificant deviation from a constant rate is measured, while all other circumstances
stay the same throughout the run, then a signal is detected. The standard method,
however, follows another approach and measures if the sum of all observed events
during the run significantly exceeds the estimated amount of background events of
that same period.
To compare the advanced methods with the standard method, it was necessary
to simulate a large amount of event sequences that contain a short period where
the rate is larger compared to the rest of the simulated run duration Trun. This
should serve as a simplified model for a weak source that only exceeds the back-
ground rate during its flare. As the PMTs had been upgraded in VERITAS in
2012, two di↵erent VERITAS states had to be simulated, before and after the up-
grade. By scanning the two dimensional parameter space of flare duration and flare
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rate, it was revealed that the exp-test method, in addition to the standard method,
would increase the detectable parameter space for both VERITAS states, while the
Bayesian-blocks method improves the detection of short-flaring, weak sources only
during post-upgrade conditions (see also Fig. 5.10). The area of additional parame-
ter space covered only by the advanced methods, is found in the region of high flare
fluxes (above 1 C.U.1) and short flare durations below 0.18·Trun. The integrated flux
above 300 GeV corresponding to one C.U. is F>300GeV ⇡ 1.2 · 1010cm�2s�1 [Aleksić
et al. (2014)]. Hence, the advanced methods are only an improvement for the de-
tection of short flares if the flux exceeds the baseline by at least this amount.
When it’s about the specific use cases for the di↵erent methods it can be concluded
that the exp-test method is a good choice for short flares or repeating fluctuations,
while the Bayesian blocks method is a good choice if the phase of the enhanced rate
happens at the beginning or the end of a run (see Fig. 5.11). The advantage of the
Bayesian blocks method is, that it automatically estimates the start and end time of
the flare. Its disadvantage is the much longer computing process and the necessity
of MC generated lookup tables.

7.2 Analysis of transient sources

After testing the methods with MC simulations, the next step of this work was to
apply the methods to VERITAS data runs of transient sources. This is the first
time that VERITAS data has been analyzed for these characteristics: a very high
flux ( & 1.C.U.) emitted over a very short duration (⇠ minutes). In no studies
before the short time variability of a VHE source was used as a detection criterion.
It was shown during the comparison process before, that the advanced methods
can discover these specific kind of flaring sources, not detectable by the standard
method. Therefore the goal was to detect these sources or discover some new un-
known sources next to them, located in the same field of view (FOV).

Especially the test on the 450 runs of mainly AGN observations revealed, that there
seems to be no such abrupt and strong rate changes within a single a run, that
could trigger a detection by the advanced methods. So no variability in the order of
minutes was seen in each of these runs. This is in consistence with the theoretical
models where the VHE emission is believed to originate from plasma blobs ejected
along the jets of an AGN. Too short raise and decay times would imply much larger
Doppler factors or much smaller radii of the blobs when compared to the respective
values inferred on the basis of observations made at other wavelengths. However,
such short time variability of AGN can not completely be excluded for those objects.
By choosing only a subset of all available VERITAS AGN data, it is highly probable
that such flaring periods just had been missed in this work here. Especially as it
is known that several AGN showed such an erratic behavior in the past. Examples
of such AGN are Mrk421 [Galante (2011)], Mrk501 [Albert et al. (2007)] , PKS
1222+216 [Aleksic et al. (2011)], PKS 2155-304 [Aharonian (2007)] and BL Lacer-
tae [Arlen et al. (2013)]. The possible explanations for the rapid TeV variability
from those sources could be small subregions within a jet (jets-in-jet) [Giannios et

1C.U. = Crab unit; the rate (and flux) measured during a Crab observation

136



7.2. ANALYSIS OF TRANSIENT SOURCES

al. (2009)], stratified structures (compact region moving faster than the rest of the
jet) [Boutelier et al. (2008)], the recollimation of the jet [Bromberg et al. (2009)] or
its deceleration [Levinson (2007)]. Therefore it is important to discover such rapid
variability more often in those sources to constrain the possible models.
By using data of a transient sources with large photon rates like Mrk 421, it was
also tested if the advanced methods can detect variability in strong sources. Due to
the large amount of photons, the intra-run variability of Mrk 421 was even visible
by eye when the measured rates had been plotted versus the time. However, the
change from a high-flux state to a low flux-state was a gradual decrease over the
whole run (⇠ 20min) which was too smooth to trigger a detection by the advanced
methods.

The last step of this work involved the application of the methods to GRB data.
While it happens quite rarely in AGN, extreme short time variability is a general
characteristic of GRBs. Especially during the prompt emission but also during
the afterglow phase these short time variability can be measured in the X-ray and
gamma-ray regime. Analyzing the VERITAS data with the newly implemented
time-sensitive methods can help answering the question if the source also emits
VHE photons correlated to those flares and which mechanism is responsible for
their production.
The prompt emission periods of all six GRBs in this study were missed by the
VERITAS observations, which all started with a delay td after the GRB trigger
due to the slewing process and/or because one has to wait for the right observing
conditions. Therefore only the afterglow phase was analyzed. During this period,
however, short X-ray flares are possible, with a flare width wX proportional to their
peak time [Chincarini et al. (2010)]. A refreshed forward shock or late central engine
activity are supposed to be the explanations [Zhang (2007)] for these flares, which
have been found in the X-ray light curves of the two GRBs observed by the XRT
instrument (GRB 100205A and GRB 100513A).
There also exist models [Wang et al. (2006)] that predict contemporaneous GeV-TeV
flares, due to inverse Compton scattering of the X-ray photons, with flare widths
of wV > wX. Therefore we expect mostly VHE flares with wV & 100 sec during an
averagely delayed VERITAS observation (td ⇡ 200 sec).
Up to now, none of these VHE flares have been detected by IACTs. The advantage
of the newly implemented time-sensitive analysis methods is the improved detection
performance for strong flares (FV > 1.25 C.U.) with short widths (wV 6 200 sec).
Which is the temporal characteristic we expect for many of the observable VHE
afterglow flares, if they exist. In case of flare durations close to the VERITAS run
duration (⇠ 1200 sec), however, the standard analysis will be the method with the
better sensitivity.
Since there was no flare detected in the VERITAS data of all six GRBs, we are able
to constrain the possible flare characteristics. Especially when also some additional
information about the X-ray flares is provided, which is the case for GRB 100205A
and GRB 100513A. By knowing the X-ray flare duration it is easy to estimate the
lower limit for the potential GeV-TeV Flares to be wV;low ⇡ 200 sec. Therefore one
can conclude, that the fluxes of possible afterglow VHE flares at these GRBs are
not supposed to exceed 1.25 C.U (⇡ 3, 7 · 10�10 erg cm�1s�1 [0,1;10 TeV]), if all the
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theoretical assumptions mentioned above are correct.
Constraining flux levels and/or durations of VHE flares is important to fine tune or
rule out existing afterglow models for specific GRBs. Even more exciting would be
a direct detection of a flare and the determination of its parameters: wV, tp and FV.
This can help figuring out which acceleration mechanisms take place at which time
in the environment of the GRB and how energetic they are.

In the end it should be mentioned as well, that the lack of flare detection of distant
sources, like GRBs and AGN, could be also caused by the absorption of VHE photons
due to the interaction with extra-galactic background light (EBL).

7.3 The Cherenkov Telescope Array - CTA

As already mentioned in the section before, it is still challenging to measure short-
transient phenomena with IACTs like VERITAS. In case of GRB prompt emission
an improved alert system and a faster slewing speed of VERITAS could lead to
smaller delays between GRB trigger and the start of observations. This way, the
end of the prompt phase could be observed. If there is VHE emission and a hard
drop in the rates, the GRB could be detectable by the advanced methods and even
by the standard method.

Another way of improving the detection of transient sources and variability in general
would be an increase in sensitivity. This can be done by new reconstruction algo-
rithms or by hardware improvements. Going even further, designing a completely
new IACT facility is the next logical step. This next-generation IACT observatory,
named Cherenkov Telescope Array (CTA), is currently in the planning stages.
It is expected that CTA will improve the sensitivity at least by an order of magni-

Fig. 7.1: left: Comparison of di↵erential sensitivities. The Fermi-LAT and the CTA
curve are taken from [Funk et al. (2013)]. While the Fermi-LAT curve corresponds to a
dataset of 1 year, the CTA curve represents the sensitivity of a 50 hour observation. The
VERITAS curve is taken from [Prokoph (2013), Fig. 3.18] and corresponds to the 50 hour
observation with the upgraded array (after summer 2012).
right: Di↵erential sensitivity at selected energies as a function of observation time taken
from [Funk et al. (2013)]. These plots were generated for a detection significance of 5� in
the relevant energy bin and a minimum number of 25 events.
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tude with respect to the current-generation IACTs (e.g. VERITAS, MAGIC, and
HESS) (see Fig. 7.1, left). Especially the improvement at low energies (< 100 GeV)
is important for the discovery of GRBs, as their detection at high energies is limited
due to EBL attenuation. But also in general will the search for short time variabil-
ity in VHE sources benefit from these improvements, as is shown in [Biteau et al.
(2011)]. Due to higher sensitivity the sampling capabilities of CTA will increase,
allowing the probe of shorter time scales.
In another study, which compared the sensitivity of CTA and Fermi-LAT in the
overlapping energy range of 10 GeV to 100 GeV, it was revealed, that the discovery
potential for short-transient phenomena (inside the FOV) is much larger in CTA
[Funk et al. (2013)], which clearly can be seen in the right plot of Fig. 7.1. CTA
has an advantage over the Fermi-LAT by many orders of magnitude, especially for
observations below 280 hours. Longer observations don’t increase the sensitivity of
CTA, due to the irreducible background.
It should however be said that the FOV of CTA is much smaller than the 2.4⇡ sr of
Fermi-LAT, but it is planed to be bigger than those of current-generation IACTs.
This would also increase the low probability of an accidental GRB discovery while
performing a scheduled observation of another object in the same FOV.

The increased sensitivity together with the lower energy threshold of CTA will enable
the detection of more distant sources. A non-detection with CTA of a distant source
simultaneously detected by the Fermi-LAT could constrain the properties of the
EBL at high redshifts. Further, CTA will be an ideal instrument to study timing
properties of VHE emitting objects down to sub-minute time scales. Better timing
information will help to determine the size and the location of the VHE emission
region and give insights about the physical processes responsible for variability.
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Appendix A

Additional options for the
timingSignificance program

A.1 Correlated or uncorrelated maps - smoothing
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Fig. A.1: Comparison between uncorrelated and correlated events. For all plots we chose:
T = 1800 sec, �bkg = 500 Hz, floss = 99.7%, �sig = 0.4 Hz and Tsig = 150sec. The position
of the simulated transient signal is at the center of the magenta circle. The left side shows
the e↵ect of non-correlated events. Each bin in the position map contains just the number
of events with exactly that position while in the right map each event assigned to a specific
position will be also added to bins around that position (r 6

p

0.008). This leads to more
events per bin as can be seen in the bottom histograms as well, showing the distribution
of all events in the central signal bin over time.
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Like during the creation of significance maps using the standard on-o↵ method,
there is also a option implemented in this program to allow correlation between
neighboring position bins or not. By default correlation is allowed, which results in
much finer binning of the position map: 400 ⇥ 400. With an additional parameter
(default = 0.008) on can define the size of the area of bins influencing each other:
A = 0.008 ·⇡. This procedure leads to a smoother position map and a larger number
per position bin. If one sets the uncorrelation option to true, the binning will reduce
to 80 ⇥ 80. This is necessary because otherwise each position bin would contain
almost no events which would make it impossible for the rate-sensitive algorithms
form Scargle and Prahl to find any rate change in that bin (Fig. A.1). The default
values represent the same settings that will be chosen for the analysis of a source
with a medium slope in its energy spectrum.

A.2 Read data file

Instead of simulating background events as described above one also has the oppor-
tunity to use pre-analyzed data events provided in the form of an standrad analysis
output file. This root-file has to contain a TTree with all the events surviving the
gamma-hadron separation and being reconstructed inside a radius of 2�. The infor-
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Fig. A.2: Use of Mrk421 data file instead of MC background generation. Left side: Just
events from data file (one run with wobble o↵set) and no MC signal. If there is no MC
signal the position of the central signal bin will be set to the source position at (0,0).
Bottom plot shows high but constant rate at source position. Right side: same Mrk421
events plus an additional MC signal with �sig = 0.4 Hz and Tsig = 150sec (exactly same as
in Fig. A.1 ). The color scale on both sides is adjusted to see the feature of the additional
MC signal on the right side. Due to this the observed point source runs into saturation
(cenral bin contains 756 events) and looks extended.
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mation of each event has to cover the direction in de-rotated x- and y-coordinates
and the exact measured time. It is now up to the user if he wants to specify some
additional Monte Carlo transient signal events on top of these background events or
not. If one wants to reveal new features of the data by analyzing them with the two
dedicated methods from Prahl and Scargle it will make no sense to add some addi-
tional Monte Carlo signal appearing somewhere in the field-of-view. In this case one
has to declare either the signal rate as zero or the signal duration as zero. Instead,
if one wants to examine the behavior of the di↵erent methods in comparison with
the standard method under most realistic conditions it will help to use the data as
background and add some fake transient signal (Fig. A.2).

A.3 Analyse only signal region

If one is not interested in the analysis of all possible positions in the field-of-view
but just in the outcome of the analysis at the expected signal region, there is also
an option to tell the program to ignore every position outside an area of 0.6� ⇥ 0.6�

around the signal direction.
Analyzing a data file generated at the end of the eventdisplay analysis chain
without any additional Monte Carlo transient signal will automatically put the signal
position at the center of the position map where we would expect an observed gamma
ray source to be reconstructed.

A.4 Parallel processing

The program also features parallelization under usage of the Message Parsing In-
terface - MPI [Karniadakis et al. (2003)]. Due to the sometimes long processing
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Fig. A.3: Two di↵erent examples of splitting the analysis process. For both plots we use
the same MC events and distribute the computation of the statistical tests over 7 parallel
processes. While on the right side each process has to calculate the result of the same
amount of position bins, the areas of bins analyzed by each process in the left plot are
smaller if the bins are closer to the center of the field-of-view or to the signal position.
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A.4. PARALLEL PROCESSING

time of the Bayesian-block algorithm, especially if the number of events in a position
bin is very large (⇡ 500 - 1000), the idea was to split the process along the x-axis
of the data container holding the information of each event. In doing so, many
di↵erent processes running in parallel and working on a part of the data container.
The number of available processes depends on the computing infrastructure of the
user and can be declared at the time of program execution. By default the splitting
divides the data container in equal size parts. This is not alway the most e�cient
way because due to the radial acceptance many events will be found in position bins
close to x = 0 and/or close to a simulated transient signal. Using an additional
option will lead to a more sophisticated splitting that divides the x-range close to
the center and close to a simulated signal position in more parts than the outer
region of the data container. (Fig. A.3)
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Appendix B

Confidence intervalls and upper
limits

The goal of each experiment is the determination of an unknown parameter. Usually
one can never resolve the exact value of parameter with infinite precision. Therefore
a traditional way of reporting errors on experimental results is the construction of
confidence intervals and upper limits.
A confidence interval is a range of values [µlow, µup] that contains the true unknown
parameter value µ with a certain probability, the so called confidence level CL. The
CL is normally defined before the measurement started and its value ↵ depends on
the confidence one wants to achieve, which is usually 99%.

P (µ 2 [µlow, µup]) = ↵ (B.1)

The interval is di↵erent for each measurement of the same unknown µ and a CL-
value of ↵ = 99% has the meaning that 99% of all measured intervals contain the
unknown true value µ. This does not mean that the unknown true value has a 99%
probability of being inside the interval. For each obtained interval the true value is
either inside or outside [Barlow (1989), Feldman et al. (1998)].

B.1 Construction of a classical confidence interval

Due to the uncertainty in the experiment the measured data sample X will follow a
probability distribution which depends on the unknown parameter µ. If one knows
the underlying distribution function one can select an acceptance interval [x�, x+]
such that:

P (x 2 [x�, x+]|µ) = ↵ (B.2)

After repeating this procedure for all possible values of µ one can draw the obtained
intervals as horizontal lines in a diagram with µ over x (see Fig. B.1). This result-
ing confidence belt gives us the opportunity to retrieve the confidence interval of
a measured value x. Just by drawing a vertical line through x one will find two
intersection points of the line with the confidence belt. These two points correspond
to µlow and µup.
The reason why this construction leads to the probability mentioned above (Equ. (B.1))
is explained in detail in the original article of J. Neyman [Neyman (1937)]. It is
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Fig. B.1: The usage and construction of a generic confidence belt. Af-
ter drawing a horizontal acceptance interval [x�, x+] for each µ with
P (x 2 [x�, x+]|µ) = ↵ one can obtain the confidence interval [µlow, µup]
by drawing a vertical line through the measured value x. [Feldman et al.
(1998)]

shown that the problem of constructing a system of confidence intervals is equiva-
lent to that of selecting acceptance intervals for each µ. Every selected acceptance
interval has to meet certain criteria which can be achieved by adjusting the limits
in the right way depending on the structure of the underlying probability function.
In case of a Gaussian distribution one valid option for the acceptance limits is the
integration over a range that is symmetric to the mean value µGauss in a way that
the result will become exactly ↵ which leads to central confidence intervals. Simply
one adds up all the probabilities of each value x, starting from highest to lowest,
until exactly ↵ is reached. Another option, which is used quite often, one fixes x+

at 1 and chooses x� accordingly to get a probability of ↵. This leads to upper
confidence limits.
Due to the discreteness of a Poisson distribution it is di�cult to get exactly the
same value as ↵. Therefore a conservative approach is to use the same summation
procedure as for the gaussian case but the final probability that is least equal or
bigger than the CL [Barlow (1989), Feldman et al. (1998)].

B.2 Upper limits for small signals

In many experiments the true value µtrue usually represents a positive quantity.
Therefore the obtained confidence intervals cannot be negative. This leads to a
problem when dealing with small µtrue, thus small x values, as can be seen in Fig. B.1.
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For measured x values smaller than 1.5 one ends up with a confidence interval that
is an empty set but, according to Neyman [Neyman (1937)], there should be an
interval with at least one entry for each possible x value. In this section I explain
how to deal with measurements of confidence intervals if the true signal is small
A possible solution is the change of the acceptance limits x� (n�) and x+ (n+)
in a way that the condition Equ. (B.2) is still true but each possible x (or n) has
a confidence interval assigned to it that is not empty. This can be achieved by
an ordering principle described in [Feldman et al. (1998)]. While in the previous
section one had to choose the points x (or n) of the acceptance interval in order of
decreasing P (x(or n)|µ), this time one has to order them by their likelihood ratios
R.

R = P (x(or n)|µ)/P (x(or n)|µbest) with: µbest = max[0, x(or n)] (B.3)

With this new ordering principle there will be an automatic transition from intervals
to upper limits for small values of x or n. Hence there won’t be any empty sets
anymore.

B.3 Profile likelihood

Another approach to the construction of confidence intervals is the method of profile
likelihood (see [Rolke et al. (2001), Rolke et al. (2005)]). Especially in the case when
somebody would like to estimate the true value of a parameter µ while the distribu-
tion function contains an unknown nuisance parameter b as well this method can be
very helpful. An example would be the measurement of the rate µ of a �-ray signal
under the influence of some unknown background rate b. The observables would be
Non and No↵ (see section 4.1 for definition). Together with the parameter ⌧ , which
accounts for di↵erent exposures in the on- and o↵-region, the overall probability
would look like this:

Pµ,b(Non, No↵) =
(µ+ b)Non

Non!
e�(µ+b)

·

(⌧b)No↵

No↵ !
e�⌧b (B.4)

This is in principle the same function that has been used in subsection 4.1.1 and
4.1.2 with hNSi = µ and hNBi = b. For the construction of the confidence interval
one can use the same likelihood ratio function as the one used for calculating the
significance (see Equ. (4.7)).

�(N ) =
L(N |µ, b̂)

L(N |µmax, bmax)
=

Pµ,b̂(N )

Pmax(N )
with: N = (Non, No↵) (B.5)

� = �2 ln�(N ) ) N 7�! P�2 [�2 ln�(N ); 1] (B.6)

The only di↵erence is that one tests the null hypothesis not only for zero but for
all possible (positive) values of µ and the conditional maximum likelihood estimate
b̂(µ). The function L(N |µ, b̂) is called the profile likelihood of µ. The hypothesis
for a specific µ is true if N 2 A(µ, b̂). The idea is basically to search for all µ,
whose two dimensional acceptance region A(µ, b̂) contains the observed values Non
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B.3. PROFILE LIKELIHOOD

and No↵ , which in turn is the same what has been done to construct a confidence
interval in section B.1. With the following derivation one can understand how the
likelihood ratio is used to estimate the acceptance region and the confidence interval:

if:

Z �↵

0

P�2 [�2 ln�(N ); 1] = ↵ with: �↵ = �2 ln�↵ (B.7)

) P (�(N ) > �↵) = ↵ ) P
h
Pµ,b̂(N ) > �↵Pmax(N )

i
= ↵ (B.8)

with: Pµ,b̂(NA) > �↵Pmax(NA); NA = events in acceptance region (B.9)

) P (N 2 NA|µ, b̂) = P (Non, No↵ 2 A(µ, b̂)|µ, b̂) = ↵ (B.10)

If one is looking for all µ that fulfill this criteria after a data point N0 = (Non, No↵)
was measured, one has to look for those µ with Pµ,b̂(N0) > �↵Pmax(N0):

� 2 lnPµ,b̂(N0) 6 �2 ln�↵ � 2 ln c; c = Pmax(N0) = const. (B.11)

) � 2 lnL(N0|µ, b̂) 6 �↵ + c0 (B.12)

In the end one just has to check where the function l(µ) = �2 lnL(N0|µ, b̂), which
can be approximated by a quadratic function of µ, intersects with the horizontal
line at �↵ + c0. The two intersection points will then mark the upper and the lower
limit of the confidence interval. �↵ is the ↵ percentile of the �2 distribution and
depends just on the confidence level one wants to achieve.
One can see that it is not necessary to know the exact value of b if one is just
interested in estimating µ. It is enough to calculate b̂(µ) under the condition that
it maximizes L(N0|µ, b̂) for a specific µ. It is also clear that c’ is the minimum
of l(µ). Hence one has to find the points where l(µ) deviates exactly �↵ from its
minimum. In case of a small number of signal events the minimum of l(µ) is close
to zero, hence there will be only one limit that has a physical valid value. It was
decided (see [Rolke et al. (2005)]) to set the lower limit to zero and just report an
upper limit instead. A more extreme case occurs when the signal events Non are
even smaller than the the background events No↵ . This time the minimum is lower
than zero and only a small part of l(µ) covers the area of µ > 0 until it reaches �↵.
An option is now to search for a µup with l(µup)� l(0) = �↵ which leads to a higher
upper limit.
As a last remark I want to point out that this method is also applicable for more
than just one nuisance parameter. For example one wants to include the uncertainty
of the signal e�ciency ✏. Therefore a third measured number N✏, besides Non and
No↵ , is necessary to estimate the e�ciency. If the distribution of N✏ is known one
can just construct a new profile likelihood function with both parameters b and ✏
being functions of µ [Rolke et al. (2001), Rolke et al. (2005)].
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DISTRIBUTION

B.4 Median and confidence interval of a unknown
distribution

Sometimes it can happen that the distribution of a parameter measurement does not
follow any known distribution. In this case one can calculate the median instead
of the mean value. Then, also the error of the median has to be determined in
a di↵erent way. Since it should also represent the 68% confidence interval, the
calculations of the median and its error are executed as follows:
First, it is necessary to sort all N measurements, that will be used to calculate the
median, from its lowest to its highest value and store them in an array A[N ]. Because
we start with the assumption of an unknown distribution with a true unknown
median, the N measurements are supposed to be a subset of this distribution. The
probability for each of these measurements is q = 0.5 of having a value that is smaller
than the true median. We are now able to use the rules for a binomial distribution
and calculate the expected number of values below the true median that will be found
in the subset: m = N · q. Hence, the entry with the index m in our ordered array
provides the expected median of the unknown distribution: A[m] (=mth event in
the ordered array). As m is just an estimate also the indexes in the 68% confidence
interval around m should be taken into account: n 2 [m � �Binom.,m + �Binom.].
With �Binom. =

p
Nq(1� q) and q = 1/2 we get the following equation for the two

confidence limits of the array indexes:

nup =
N

2
+

p

N

2
and nlow =

N

2
�

p

N

2
(B.13)

Because an index can be only an integer we have to round-o↵ both results: iup =
bnupc and ilow = bnlowc. Similar to the determination of the median, one hast to
look into the array at the index positions iup and ilow to find the entries whose
values finally provide the confidence limits CL0

up = A [iup] and CL0
low = A [ilow]. To

be more accurate one can even take into account the deviation of the original nup

and nlow due to rounding:

CLup(low) = CL0
up(low) +

�
A
⇥
iup(low) + 1

⇤
� CL0

up(low)

� �
nup(low) � iup(low)

�
(B.14)
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