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Abstract

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four

imaging atmospheric Cherenkov telescopes (IACTs). VERITAS is sensitive to very-high-energy

�-rays in the range of 100 GeV to > 30 TeV. Hypothesized primordial black holes (PBHs) are

attractive targets for IACTs. If they exist, their potential cosmological impact reaches beyond

the candidacy for constituents of dark matter. The sublunar mass window 10
17 . "/g . 10

23

is the largest unconstrained range of PBH masses. This thesis aims to develop novel concepts

searching for light PBHs with VERITAS. PBHs below the sublunar window lose mass due to

Hawking radiation. They would evaporate at the end of their lifetime, leading to a short burst

of �-rays. If PBHs formed at ∼ 10
15

g, the evaporation would occur nowadays. Detecting these

signals might not only confirm the existence of PBHs but also prove the theory of Hawking

radiation. This thesis probes archival VERITAS data recorded between 2012 and 2021 for

possible PBH signals. This work presents a new automatic approach to assess the quality

of the VERITAS data. The array-trigger rate and far infrared temperature are well suited to

identify periods with poor data quality. These are masked by time cuts to obtain a consistent

and clean dataset which contains about 4222 hours. The PBH evaporations could occur at any

location in the field of view or time within this data. Only a blind search can be performed to

identify these short signals. This thesis implements a data-driven deep learning based method

to search for short transient signals with VERITAS. It does not depend on the modelling of the

effective area and radial acceptance. This work presents the first application of this method to

actual observational IACT data. This thesis develops new concepts dealing with the specifics

of the data and the transient detection method. These are reflected in the developed data

preparation pipeline and search strategies. After correction for trial factors, no candidate PBH

evaporation is found in the data. Thus, new constraints of the local rate of PBH evaporations

are derived. At the 99% confidence limit it is below < 1.07× 10
5

pc
−3

yr
−1
. This constraint with

the new, independent analysis approach is in the range of existing limits for the evaporation

rate.

This thesis also investigates an alternative novel approach to searching for PBHs with IACTs.

Above the sublunarwindow, the PBH abundance is constrained by opticalmicrolensing studies.

The sampling speed, which is of order of minutes to hours for traditional optical telescopes, is

a limiting factor in expanding the limits to lower masses. IACTs are also powerful instruments

for fast transient optical astronomy with up to O(ns) sampling. This thesis investigates whether

IACTs might constrain the sublunar window with optical microlensing observations. This

study confirms that, in principle, the fast sampling speed might allow extending microlensing

searches into the sublunar mass window. However, the limiting factor for IACTs is the

modest sensitivity to detect changes in optical fluxes. This thesis presents the expected rate of

detectable events for VERITAS as well as prospects of possible future next-generation IACTs.

For VERITAS, the rate of detectable microlensing events in the sublunar range is ∼ 10
−6

per

year of observation time. The future prospects for a 100 times more sensitive instrument are at

∼ 0.05 events per year.





Kurzfassung

Das Very Energetic Radiation Imaging Telescope Array System (VERITAS) ist ein Instrument

mit vier atmosphärischen Cherenkov-Teleskopen (IACTs). VERITAS ist empfindlich für

sehr hoch-energetische �-Strahlung im Bereich von 100 GeV bis > 30 TeV. Hypothetische

primordiale Schwarze Löcher (PBHs) sind interessante Ziele für IACTs. Falls sie existieren,

könnte ihr potentieller kosmologischer Einfluss über die Möglichkeit, dass sie ein Bestandteil

der dunklen Materie sind, hinausgehen. Der größte nicht eingeschränkte Bereich der PBH-

Massen ist das sublunare Fenster 10
17 . "/g . 10

23
. Das Ziel dieser Arbeit ist es, neue

Konzepte für die Suche nach leichten PBHs mit VERITAS zu entwickeln. Durch die Hawking-

Strahlung verlieren PBHs unterhalb des sublunaren Fensters an Masse. Am Ende ihrer

Lebenszeit verdampfen diese, was einen kurzen Ausbruch an �-Strahlung verursacht. Falls

PBHs mit ∼ 10
15

g entstanden sind, würde sich dieser Ausbruch in der heutigen Zeit ereignen.

Der Nachweis dieser Signale könnte nicht nur die Existenz von PBHs bestätigen, sondern

auch die Theorie der Hawking-Strahlung beweisen. In dieser Arbeit werden VERITAS-Daten

aus den Jahren 2012 bis 2021 auf mögliche PBH-Signale untersucht. Es wird ein neuer

automatisierter Ansatz zur Beurteilung der Qualität der VERITAS-Daten vorgestellt. Die

Array-Trigger-Rate und die ferne Infrarot-Temperatur sind gut geeignet, um Zeiträume mit

schlechter Datenqualität zu identifizieren. Diese werden maskiert, um einen konsistenten

Datensatz zu erhalten, der etwa 4222 Stunden umfasst. Die PBH-Verdampfungen könnten

an jeder beliebigen Stelle im Sichtfeld oder zu jeder beliebigen Zeit innerhalb dieser Daten

auftreten. Zur Identifizierung dieser kurzen Signale kann nur eine Blindsuche durchgeführt

werden. In dieser Arbeit wird eine datengestützte, auf Deep Learning basierende Methode zur

Suche nach kurzen vorübergehenden Signalen mit VERITAS implementiert. Die Methode ist

nicht von der Modellierung der effektiven Fläche und der radialen Akzeptanz abhängig. Diese

Arbeit präsentiert die erste Anwendung dieser Methode mit echten IACT-Beobachtungsdaten.

In dieser Arbeit werden neue Konzepte entwickelt, die sich mit den Besonderheiten der Daten

und der Methode befassen. Sie spiegeln sich in der entwickelten Datenvorbereitung und den

Suchstrategien wider. Nach Korrektur der Versuchsfaktoren wird in den Daten kein Kandidat

für PBH-Verdampfung gefunden. Daher wird die lokale Rate von PBH-Verdampfungen auf

unter < 1, 07 × 10
5

pc
−3

yr
−1

an der 99%-Konfidenzgrenze beschränkt. Dieses Limit, welches

mit dem neuen, unabhängigen Analyseansatz erreicht wurde, liegt im Bereich der bestehenden

Grenzwerte für die Verdunstungsrate.

In dieser Arbeit wird auch ein alternativer neuer Ansatz für die Suche nach PBHs mit IACTs

untersucht. Oberhalb des sublunaren Fensters wird die Existenz von PBHs durch optische

Mikrolensing-Studien eingeschränkt. Für niedrige Massen ist die Abtastgeschwindigkeit, die

bei herkömmlichen optischen Teleskopen in derGrößenordnung vonMinuten bis Stunden liegt,

ein limitierender Faktor. IACTs sind auch leistungsstarke Instrumente für die schnelle optische

Astronomie mit Abtastraten von bis zu O(ns). In dieser Arbeit wird untersucht, ob IACTs das

sublunare Fenster mit optischen Mikrolensing-Beobachtungen beschränken könnten. Diese

Studie bestätigt, dass die schnelle Abtastgeschwindigkeit eine Ausweitung der Mikrolensing-

Suche auf das sublunare Massenfenster ermöglichen könnte. Der begrenzende Faktor für



IACTs ist jedoch die eingeschränkte Empfindlichkeit, um Änderungen im optischen Fluss

zu detektieren. In dieser Arbeit werden die erwarteten Raten der nachweisbaren Ereignisse

für VERITAS sowie für mögliche zukünftige IACTs der nächsten Generation vorgestellt. Für

VERITAS beträgt die Rate der nachweisbaren Microlensing-Ereignisse im sublunaren Bereich

∼ 10
−6

pro Jahr. Die Zukunftsaussichten für ein 100-mal empfindlicheres Instrument liegen

bei ∼ 0, 05 Ereignissen pro Jahr.



Contents

Abstract iii

Contents vii

1 Introduction 1

Theory and Instrumentation for Gamma ray astronomy 3

2 Primordial Black Holes 5
2.1 Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Searches for Primordial Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Very-High-Energy �-ray Astronomy 13
3.1 Atmospheric Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Cherenkov Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 �-ray Induced Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Cosmic-ray Induced Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Imaging Air Cherenkov Telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 VERITAS 19
4.1 The VERITAS Telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.2 Optics and Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3 Data Acquisition and Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.4 Weather Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Calibration and Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Image Cleaning and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 Stereo Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.4 Background Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.5 Instrument Response Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.6 Throughput Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Search for light Primordial Black Holes 25

5 Deep-Learning-Based Transient Detection Method for VERITAS 27
5.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Deep Learning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.3 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Deep Learning in Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Data Processing and Selection 41
6.1 Analysis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Spike Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



6.3.2 Cloud Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.3 Changes of NSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.4 Final Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3.5 Selection Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Simulation of PBH Evaporation Signals 57
7.1 �-ray Signals from Evaporating PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Simulation of Evaporation Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Data Preparation Pipeline 61
8.1 Region of Interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2 Time and Energy Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Padding and Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.5 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.6 Preparation of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Training and Calibration 79
9.1 Auxiliary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.1.1 Calculation of Auxiliary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.1.2 Runwise Event Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.1.3 Intra-run Event Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.2 Training and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.3 Calibration Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3.1 Parametrisation of the Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3.2 Calibration Meta Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3.3 Calibration Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10 Search for PBH Evaporation 109
10.1 Validation of Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2 Detection Efficiency and Effective Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.3 Constraining the Rate of PBH Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.3.1 Calculation of Upper Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.3.2 Search for PBH Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11 Optical Microlensing by Primordial Black Holes with IACTs 123
11.1 Optical Microlensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.2 Microlensing Observations with IACTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.2.1 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.2.2 Event rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12 Conclusions and Outlook 131

Appendix 135

A Background Rate Dependencies 137

Bibliography 141

Acknowledgements 151



List of Figures

1.1 The sublunar mass Window of PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 ("BH) over the lifetime of the BH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Constraints on non-evaporated PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Constraints on evaporating PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Constraints on burst rate of PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Simulated �-ray air shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Simulated proton air shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Density of Chernenkov photons at ground level . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Image parameters of �-ray images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Illustration of the stereoscopic IACT technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Image of the VERITAS telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 PSF and energy dispersion for oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Schematic illustration of a feed-forward neural network . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Common activation functions for deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Schematic illustration of a deep recurrent neural network . . . . . . . . . . . . . . . . . . . . . 31

5.4 Backpropagation in recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Gates in Long Short-Term Memory network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Illustration of the RNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Illustration of the data preparation and analysis pipeline. . . . . . . . . . . . . . . . . . . . . . 37

6.1 Correction of the L3 rate and outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Time-cuts for spike and drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Effect of clouds on the L3 rate and FIR temperature . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Normalization of the L3 rate and FIR temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Outlier detection for clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Definition of time cuts for clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.7 Detection of rate changes due to NSB changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8 Standard deviation of L3 rate for training and prediction datasets . . . . . . . . . . . . . . . . . 54

6.9 Standard deviation of L3 rate for training and prediction datasets . . . . . . . . . . . . . . . . . 55

6.10 Rate of reconstructed events as a function of the L3 rate . . . . . . . . . . . . . . . . . . . . . . 55

6.11 Standard deviation �reco,20 of reconstructed rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Instantaneous �-ray emission during BH evaporation . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Emitted light curve during BH evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Average simulated emission of �-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.1 Schematic illustration of the data preparation pipeline . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Dependency of the PSF on the zenith and offset angles . . . . . . . . . . . . . . . . . . . . . . . 63

8.3 Definition of ROIs and exclusion regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.4 Assignment of events roi ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.5 Series Sp of counts in one ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.6 Illustration of sliding window and padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.7 Padded light curves Sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



8.8 Efficiency of shuffling algorithm for toy simulation . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.9 Padded and shuffled light curves Sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.10 Position of oversampled events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.11 PDF of the oversampled distance from the initial position . . . . . . . . . . . . . . . . . . . . . 74

8.12 Comparison of sampled and expected energy dispersion . . . . . . . . . . . . . . . . . . . . . . 74

8.13 Bias corrected oversampled energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.14 Number of oversampled events in ROIs as a function of ROI position . . . . . . . . . . . . . . . 75

8.15 Energy spectrum of initial an oversampled events. . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.16 Number of oversampled events in ROIs as a function of the distance to the exclusion region . . 77

9.1 Correlation of �-like event rates with sec(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.2 Correlation of �-like event rates with azimuth angle for 1.15 < sec(�) ≤ 1.4 . . . . . . . . . . . 82

9.3 Correlation of �-like event rates with reference time for sec(�) ≤ 1.05 . . . . . . . . . . . . . . 83

9.4 Galactic latitude flux profiles of the inner and outer Galactic plane. . . . . . . . . . . . . . . . . 84

9.5 Background counts for observations in and outside of the Galactic plane . . . . . . . . . . . . . 84

9.6 Correlation of L3 trigger rate and dead time at sec(�) ≤ 1.05 . . . . . . . . . . . . . . . . . . . . 85

9.7 Correlation of event rates with mean L3 trigger rate for sec(�) ≤ 1.05 . . . . . . . . . . . . . . . 85

9.8 Season-wise background rates for 0.1 ≤ Erec/TeV < 0.33 . . . . . . . . . . . . . . . . . . . . . . 86

9.9 Correlation of event rates with pedestal variance for sec(�) ≤ 1.05 . . . . . . . . . . . . . . . . 87

9.11 Correlation of pedestal variance and"(Etotal) for sec(�) ≤ 1.05 . . . . . . . . . . . . . . . . . . 88

9.10 Correlation of run-wise average pedestal variance and average L3 rate for runs with sec(�) ≤ 1.05 88

9.12 Correlation of event rates with multiplicity for sec(�) ≤ 1.05 . . . . . . . . . . . . . . . . . . . . 89

9.13 Dependency between ROI-wise event rate and offset angle � . . . . . . . . . . . . . . . . . . . . 89

9.14 Dependency of ROI-wise multiplicity"(�) on offset angle � . . . . . . . . . . . . . . . . . . . 90

9.15 Comparison of ROI- and FoV-wise multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.16 Dependency of � and ( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.18 Intra-run change of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.17 Intra-run correlations with Δ)ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.19 Intra-run correlations with sec(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.20 Intra-run correlations with | | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.21 Intra-run correlations with '̃L3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.22 Intra-run correlations with"(�total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.23 Illustration of the training process of the LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.24 Relative learning rate for training of the LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.25 Hyper-parameters for training of the LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.26 Cost function during training of LSTM with envelope . . . . . . . . . . . . . . . . . . . . . . . . 100

9.27 Zoomed cost function during training of LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.28 Probability density function and survival function of a normal distribution . . . . . . . . . . . 102

9.29 Median rate per VERITAS season . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.30 Survival function of the first calibration stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.31 Location of decoder relative to expected signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.1 Distribution of �-like event counts for training and inference . . . . . . . . . . . . . . . . . . . 109

10.2 Difference in"(�total) between training and inference data . . . . . . . . . . . . . . . . . . . . 110

10.3 Detection efficiency 5(0,0,0)(3, �) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.4 Detection efficiency with exclusion regions per meta bin . . . . . . . . . . . . . . . . . . . . . . 112

10.5 Effective search volume +<
eff

per meta bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.6 Observation time )obs per meta bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.7 Upper limit of the detected counts � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.8 Distribution of �2
for all calibration stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.9 Survival function of the significance distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 117



10.10 Upper limits of the evaporation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.1 Microlensing constrains of PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.2 Apparent light curves during microlensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.3 Required amplification and maximum distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.4 Candidate stars for microlensing study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.5 Expected event rate and average duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1 Season-wise background rates for 0.33 ≤ Erec/TeV < 1 . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Season-wise background rates for 1 ≤ Erec/TeV < 100 . . . . . . . . . . . . . . . . . . . . . . . . 139

List of Tables

6.1 Number of processed runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Database parameters for data preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Common selection criteria for all run phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Different selection criteria for the run phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Overview of data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 Summary of simulated PBH parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.1 Columns of the event-list stored in the DL3 files. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.1 Overview of the potential auxiliary parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.2 Mapping of | | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.3 Summary of run-wise study of auxiliary parameters . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.4 Summary of the study of intra-run auxiliary parameters . . . . . . . . . . . . . . . . . . . . . . . 96

9.5 Summary of training hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.6 Summary of the meta bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7 Overview of calibration stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105





1014 1017 1020 1023 1026

PBH mass  [ g ]
10 3

10 2

10 1

100

PB
H

/
CD

M

Ev
ap

or
at

io
n

Micro-
lensing

Figure 1.1: The sublunar mass Window

of PBHs.

[1]: Carr et al. (2021), ‘Constraints on

primordial black holes’

[2]: Hawking (1974), ‘Black hole explo-

sions?’

[3]: Aghanim et al. (2020), ‘Planck 2018

results-VI. Cosmological parameters’

[4]: Griest et al. (2013), ‘New Limits on

Primordial Black Hole Dark Matter from

an Analysis of Kepler Source Microlens-

ing Data’

Introduction 1
Over 50 years ago, theoretical work proposed the formation of black

holes during the Universe’s early stages. Since then, these Primordial

Black Holes (PBHs) have been involved in many cosmological expla-

nations. Their range of possible masses is enormous. Their predicted

existence has motivated experimental work to search for these objects

using various methods. Large parts of the mass range are constrained.

Yet, their existence could neither be confirmed nor excluded.

The sublunar mass range 10
17 . "/g . 10

23
which we show in Figure 1.1

is the broadest unconstrained window [1]. PBHs with masses belong this

range lose mass due to the Hawking radiation [2]. At the end of their

lifetime, the black holes evaporate. If created at ∼ 10
15

g, the evaporation

would take place at the current time. This would create an O(s) long
burst of very-high-energy (VHE, � & 50 GeV) �-rays which might be

detectable. Thismight directly prove the existence of PBHs and the theory

of Hawking radiation.

In contrast, for PBHs with masses in the sublunar window and above,

the radiation is irrelevant. These are a viable candidate for dark matter,

which comprises about 26% of the total energy in the Universe [3]. Ad-

jacent to the sublunar mass range, microlensing observations provide

the existing constraints for the smallest masses of non-evaporating PBHs.

The sampling speed of classical optical instruments typically defines the

low-mass end of these studies [4].

The main objective of this thesis is to constrain the PBH abundance with

the Very Energetic Radiation Imaging Telescope Array System (VERI-

TAS). It is an array of four imaging atmospheric Cherenkov telescopes

(IACTs). By construction, IACTs are specialized optical detectors capable

of detecting the ∼ 10 ns long Cherenkov flashes from VHE �-ray induced

atmospheric air showers.

This thesis particularly aims to answer the following questions:

1. Can we use a novel transient detection method to identify gamma-

ray signals of evaporating PBHs in archival VERITAS data?

2. Are fast optical IACT microlensing observations capable of con-

straining the sublunar mass window?

These two questions tackle the PBH abundance on both sides of the

unconstrained sublunar mass window. We present a data-driven deep

learning-based transient detection method for VERITAS to answer the

first question. It requires a limited number of assumptions about the

instrument characteristics and the signals of PBHs.

We divide this thesis into two parts. First, we present the theory and

instrumentation of �-ray astronomy. We search for light primordial black

holes with VERITAS in the second part. The bulk of it is dedicated to

deploying the novel deep-learning transient detection method used to

search for PBH evaporation. In the following, we present a concise outline

of this thesis:

Chapter 2 - introduces primordial black holes. We discuss scenarios

for their formation and some of their implications. We conclude this
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chapter with a review of existing constraints on the PBH abundance.

Chapter 3 - In this chapter, the concepts of ground-based VHE �-ray
astronomy are presented. We introduce atmospheric air showers and

their detection using imaging air Cherenkov telescopes.

Chapter 4 - introduces VERITAS which is one of the currently operating

Cherenkov telescope arrays. We highlight the most critical elements of

the telescopes and the standard data analysis relevant to this thesis.

Chapter 5 - This chapter sets the stage for the presentation of the novel

deep-learning based transient detection method for VERITAS. First, we

review the concepts of deep learningwhich are the core of this approach.

Finally, also the strategies for the anomaly detection are introduced. Its

core is a recurrent neural network with an encoder-decoder architecture.

The network outputs and observations are interpreted statistically using

a calibration pipeline.

Chapter 6 - presents the selection and processing of VERITAS data from

about nine years of observations which we consider in this thesis. We

implement tools to process a bulk of observations automatically. Further,

we develop an automatic data quality assessment system. The data

processing and selection methods allow the generation of consistent

datasets, which are crucial for this thesis.

Chapter 7 - In this chapter, we introduce the expected �-ray signal from

PBH evaporation. We use the introduced parametrization to simulate

the detectable signals for VERITAS.

Chapter 8 - presents the newlydevelopedpreparationpipeline. It follows

the concepts introduced in Chapter 6. The main features are the number

of �-ray counts in time steps and patches of the sky. Also the preparation

of the simulated signals is discussed.

Chapter 9 - To give context to the �-ray counts, auxiliary parameters are

required as input to the RNN. These describe the fundamental changes

of the data characteristics between different observations. The influences

on the observed rates of �-ray counts are studied to provide relevant

auxiliary parameters. With these inputs, we perform the training of

the RNN. Finally, the results of the RNN are put into statistical context

using the calibration pipeline.

Chapter 10 - In this chapter, we present the results of the search for

evaporatingPBHs. First,we apply it to the simulated signals todetermine

the fraction of detected events and calculate the effective search volume.

It defines the sensitivity of this analysis. We then scan the selected

dataset for PBH bursts and constrain the local rate of PBH evaporation.

Chapter 11 - probes the capabilities of IACTs to constrain the sublunar

window with optical microlensing observation. We start with a review

of the microlensing formalism, followed by a study of the optical

performance of IACTs in this context.

Finally, Chapter 12 presents the conclusions and outlook of this thesis.

We have implemented the data-driven deep learning based transient

detection method, a new, independent approach to search for PBH

evaporation bursts with VERITAS. We are able to constrain the rate

of evaporating PBHs to < 1.07 × 10
5

pc
−3

yr
−1

at the 99% confidence

limit. This is in the range of existing limits for the evaporation rate. The

prospects for the alternative approach of optical microlensing with IACTs

are not encouraging. We expect a rate of detectable events about 10
−6

yr
−1

with VERITAS.
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The existence of Primordial Black Holes (PBHs) was initially proposed

by Zel’dovich in 1967 [5]

[5]: Zel’dovich et al. (1967), ‘The Hypoth-

esis of Cores Retarded during Expansion

and the Hot Cosmological Model’

and Hawking in 1971 [6]

[6]: Hawking (1971), ‘Gravitationally Col-

lapsed Objects of Very Low Mass’

. They are a special type

of black holes (BHs) which might be created in the early stages of the

Universe. They could have been formed at a wide range of BH masses.

We review proposed processes of formation in section 2.1.

PBHs are the only objects, theorized or detected, that might emit a

detectable Hawking radiation [2]

[2]: Hawking (1974), ‘Black hole explo-

sions?’

. In section 2.2 we review this emission

mechanism. Indeed, PBHs formed at masses smaller than ∼ 10
15

g would

have evaporated by today. It also gives rise to a narrow mass window

of PBHs that would evaporate nowadays. Among others, evaporating

PBHs can provide explanations to the extragalactic and Galactic �-ray
backgrounds [7, 8], the reionization of the pregalactic medium [9] and

the annihilation line radiation from the Galactic center [10].

PBHs at much larger masses are unaffected by Hawking radiation. These

non-evaporating PBHs are interesting targets on their own. Foremost,

they are attractive candidates for the dark matter (DM) that comprises

∼ 26% of the total energy in the universe [3]. We discuss this scenario in

more depth in section 2.3. Even if they do not contribute to the DM, they

are invoked in numerous cosmological models. For example they might

explain the heating of stars within the Galactic disk [11], the seeds of

supermassive black holes, the existence of massive compact halo objects

[12], and the generation of galaxies [13].

Because of the many implications, PBHs have been focus of intense

interest during the past 50 years. Yet, their firm detection is still pending.

A large variety of methods aim to constrain the abundance. In this

thesis, we search for currently evaporating PBHs and non-evaporating

PBHs as DM candidate. We review previous relevant searches and the

corresponding limits on the abundance in section 2.3.

2.1 Formation

The Universe after the big bang was in a state of great compression. This

high density opens up the chance for various PBH formation scenarios.

All formation mechanisms yield a connection between the PBH mass

and the horizon mass at formation

"H ∼
23C

�
∼ 10

15

(
C

10
−23

s

)
s, (2.1)

where C is the time after the big bang, � is the gravitational constant, and

2 is the speed of light. PBHs can span an enormous range of masses. The

earliest time of formation is given by the Planck time 10
−43

s which yields

PBHs at the Planck mass 10
−5

g. PBHs created 1 s after the big bang,

however, have masses of 10
5 "�. In the following, we discuss the most

frequently studied formation scenarios and the distribution of possible

PBH masses.
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Collapse of Overdense Regions During the Radiation-Dominated
Era

This scenario requires inhomogenities during the radiation-dominated

era. Regions with a large overdensity could stop expanding and recollaps

[14]. The density contrast of a perturbation with density � is described

by

� B
� − �̄
�̄

, (2.2)

where �̄ is the background energy density. The PBH formation occurs

when �2 ≤ � ≤ 1, where �2 is the threshold parameter. The value of �2 is
critical as it directly affects the abundance of PBHs. Historically, a first

estimate using an analytical argumentation suggested �2 ∼ 1/3. However,

more recent numerical and analytical work yield �2 = 0.45 [15, 16]. The

precise value of the thresholds depends on the density profile [17, 18]

and the equation of state parameter F [19]. The latter describes the ratio

of pressure to energy density. In the radiation dominated era F = 1/3.
Assuming a Gaussian distribution of the fluctuations with dispersion �,
the fraction of collapsing patches is

� ∼ Erfc

(
�2√
2�

)
, (2.3)

where Erfc is the complementary error function.

Mass Function of PBHs

The mass of PBHs forming in the radiation-dominated era is [1]

"PBH = �"H = �
4�
3

�'3

H
= �

23C

�
≈ 2.03 × 10

5�

(
C

1 s

)
"� (2.4)

where � < 1 is a numerical factor whose exact value depends on the

details of the gravitation collapse, and 'H is the horizon radius. From

Equation 2.4, one might expect a monochromatic mass function with

Δ"PBH ∼ "PBH when PBHs are formed at the same time.

Some scenarios also suggest PBH formation over a prolonged period

yielding an extended mass function. But even the formation in single

period might have formed extended mass functions. One example might

be the collapse from scale-invariant density fluctuations. The spectrum

of these perturbations is

P(:) ∝ :=−1 , (2.5)

where : is the wavenumber of fluctuations in Mpc
−1
, and = is the scalar

spectral index. For scale-invariant fluctuation, = = 1, the expected mass

spectrum is

d#

d"
∝ "− with  =

2(1 + 2F)
1 + F . (2.6)

For a formation during the radiation-dominated era  = 5/2.
A much studied effect is the critical collapse that occurs as the density
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perturbations approach �2 . This effect leads to an upper cutoff of masses

at ∼ "H with a tail to lower masses. For the radiation-dominated era the

mass function of PBHs in this scenario is [20, 21]

d#

d"
∝ "2.85

exp

(
−

(
"

" 5

)
2.85

)
. (2.7)

It extends to arbitrary low masses with an exponential cut-off at" 5 ≈
"H.

Alternative Formation Mechanism

A number of PBH formation mechanism were proposed in addition to

the above mentioned scenarios. Among these is the PBH formation via

collapse of inhomogenities in a matter-dominated era that might arise

from slow reheating after the inflation [22]. Also cosmic strings which

self-interact and form cosmic loops are proposed. There is a chance of

a loop to be completely contained in its Schwarzschild radius [23]. The

probability for this formation is constant at every epoch yielding an

extended mass function. Also see [24] for a more detailed review of the

possible formation mechanism.

2.2 Hawking Radiation

Historically, it was believed that due to their immense gravitational field,

black holes could not emit any radiation. The fact that PBHs might be

very small triggered an investigation of the quantum properties of black

holes. Ultimately, this study by Hawking led to the understanding that

black holes might radiate fundamental particles with spin B at a rate of

[25]

d
2#

d�dC
=

Γ/2�ℏ
4G − (−1)2B =dof. (2.8)

Here ℏ is the reduced Planck constant, =dof are the degrees of freedom of

the particle. Γ is the absorption coefficient which describes the fraction of

particles absorbed by the BH [26]. The black hole angularmomentum and

electric charge is radiated away faster than its mass. Accordingly, a sig-

nificant Hawking radiation is expected only for non-rotating, uncharged

black holes. For these, the dimensionless parameter G is

G ≡ �

:B)BH

, (2.9)

where � is the energy of the emitted particle, :B is the Boltzman constant,

and the temperature )BH of the black hole only depends on its mass"BH

[27]

:B)BH =
ℏ23

8��"BH

≈ 1.058

(
10

13
g

"BH

)
GeV. (2.10)
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For an emitted particle of rest mass <, the absorption coefficient for

� � <22
is in the form of

Γ("BH , �, B) = 27

(
G

8�

)
2

�B(G). (2.11)

For large G the dimensionless parameter �B(G) → 1 [28]. The emitted

particles result in a decreasing BH mass,

d"BH

dC
= − 1

22

∑
8

∫ ∞

0

d
2#8

d�dC
�d� ≡ −

("
BH)

"2

BH

, (2.12)

where the sum over 8 includes all fundamental particle species. The

function ("BH) incorporates all emitted particles and their degrees

of freedom [29]. As the mass of the BH decreases and its temperature

increases, the list of emitted particles increase. Considering all confirmed

particles of the StandardModel, the evolution of  is shown in Figure 2.1.
1

Figure 2.1: The function ("
BH) de-

scribes the emission of all fundamental

particles. As the BH mass decreases, its

temperature rises and thus more parti-

cles are emitted. The remaining lifetime

� of the BH is calculated using Equa-

tion 2.13. For this, the average value

of ("BH) are calculated in the range

< = "BH to < = 0 kg. Adapted from

[27].
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MBH   [kg]

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

(M
BH

)  
 [1

017
kg

3 s
1 ]

s+d+u+g+ +e+ +

c

b
W ±Z

t
H0

4.17 × 105 4.69 × 108 5.02 × 1011 6.82 × 1014 7.43 × 1017
Remaining Lifetime    [s]

Integrating Equation 2.12 yields the time � until the BH with mass"BH

lost its complete mass

� =
"3

PBH

3
, (2.13)

where  is the average value of ("PBH) over the lifetime of the BH. We

show values of the remaining lifetime � in the top axis of Figure 2.1. From

this calculation, we find that BHs with ∼ 8.4 × 10
14

g would evaporate

after ∼ 13.8 × 10
9

yr, corresponding to the age of the Universe [30]. At

the final stages ("BH . 2.2 × 10
8

kg, � . 0.144 yr = 52.6 d) of the BH

evaporation ("PBH) remains constant at

 5 = 8 × 10
17

kg
3

s
−1. (2.14)

Using this in Equation 2.12 shows that the emission rate accelerates with

"−2

BH
. Eventually, the BH evaporates completely in a burst of fundamental
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particles.

Equation 2.8 describes the direct emission of fundamental Standard

Model particles which are leptons, quarks, and gauge bosons. It also

includes a component of directly emitted �-rays which are important

for the highest energy of the photon spectrum. The quarks and gluons

undergo fragmentation and hadronization to intermediate states. Eventu-

ally, these decay into photons, neutrinos, protons, antiprotons, electrons,

and positrons. The most dominant such decay for the photon production

is the neutral pion decay �0 → 2�. A third component comes from the

decay of other fundamental particles such as the �-lepton. However, this

component is small compared to the other contributions. We introduce

a description of the �-ray spectrum during the evaporation of a BH in

Chapter 7.

2.3 Searches for Primordial Black Holes

In this section we review the current status of searches for PBHs. These

works commonly assume that PBHs follow a monochromatic mass func-

tion.Wediscuss the two complementary scenarios of non-evaporating and

evaporating PBHs separately. We refer to the standardΛ cold dark matter

(Λ��") model with the age of the universe C0 = 13.8 × 10
9

yr and the

Hubble constant�0 ≡ ℎ×100 km s
−1

Mpc
−1
, where ℎ = (0.6736±0.0054)

[30].

Constraints on Non-Evaporated Primordial Black Holes

As mentioned above, non-evaporating PBHs are often discussed in the

context of dark matter. The existence of DM is well established. Its

influences are observed experimentally by various methods. Among

them are the rotation velocities of stars in spiral galaxies [31], X-ray

emission coming from hot gas in elliptical galaxies [32], and gravitational

lensing [33]. The relative densities Ω of different types of matters are

typically measured in ratio to the critical density

�2 =
3�0

8��
≈ 0.85 × 10

−29

g cm
−3. (2.15)

Measurements of the cosmic microwave background yield values for

the baryonic matter ΩBM = 0.049 ± 0.001, for dark matter ΩCDM =

0.264 ± 0.005 and for the dark energyΩDE = 0.685 ± 0.007 [3].

While the confirmation of any proposed DM candidate is still pending

to date, some of its properties are quite clear. They are non-baryonic

objects that possess nonzero masses as they form the bulk of galaxies.

DM might be either microscopic or macroscopic. As they exist in the

current time, their lifetimes have to be larger then the age of the Universe.

They do not interact via the electromagnetic force and thus should be

electrically neutral. The state of the art scenario for the formation of

cosmic structures such as galaxies is due to a gravitational collapse of

DM. This can be best explained by non-relativistic cold DM (CDM) [34].

As discussed above, the most probable PBH formation scenarios are

during the radiation-dominated era. Thus, the constraint of the baryonic

mass ratio from the big bang nucleosynthesis does not apply to them
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[35]. Therefore, PBHs should be considered non-baryonic. They fulfill

all of the above criteria making them valid CDM candidates. An upper

limit of the total PBH density isΩPBH ≤ ΩCDM. It is practical, to express

constraints on the density fractional of non-evaporating PBHs in terms

of the total DM

5 (") ≡ ΩPBH("PBH)
ΩCDM

. (2.16)

Figure 2.2 shows current limits on the PBH abundance as a function

of "PBH. A large number of methods are able to probe different parts

of the mass range spanning over 40 orders of magnitudes. For a more

detailed discussion of these constraints see [1]. Only three mass windows

could have a significant fraction of PBHs: the asteroidal to sublunar

range 10
17 . "/g . 10

23
, the intermediate range 10

1 . "/"� . 10
2
,

and the stupendous mass range "/"� & 10
11
. However, the last can

not contribute to the DM halo of galaxies, as it it heavier than the total

galaxies. In recent years, gravitational wave detections of BH mergers in

the range 10−50"� have drawnmuch attention to the intermediatemass

range. Black holes were initially not expected in this range making PBHs

an attractive explanation. However, it is also argued, that the sublunar

mass range is more plausible for the PBH formation.

Figure 2.2: Constraints on non-

evaporated PBHs in 5 ("). The colors

group together different categories

of studies. Red: evaporation, magenta:
lensing, green: dynamical effects, black:
gravitational waves, light blue: accretion,
orange: cosmic microwave background

distortions, dark blue: large-scale

structure, and grey: background effects.

This graph only includes commonly

accepted constraints. The labels within

the graph refer to different studies

conducted for the PBH abundance. For

a more detailed description of these see

the original graph in [1] and references

therein.

Constraints on Evaporated Primordial Black Holes

At the time of formation C8 the fraction of the Universe’s mass attributable

to PBHs is described by [1]

�(") ="=PBH(C8)
�(C8)

(2.17)

≈7.06 × 10
−18�−1/2

(
ℎ

0.67

)
2 ( 6∗i

106.75

)
1/4
ΩPBH(")

(
"

10
15

)
1/2
,

(2.18)
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where =PBH(C8) is the number density, �(C8) is the density, 6∗i is the

relativistic degrees of freedom normalised to its value at 10
−5

s, ℎ is

defined by the Hubble constant above, and � was first introduced in

Equation 2.4. ThedependencyonΩPBH implies that limits on the currently

existing non-evaporated PBHs directly also constrain �. The quantity � in

Equation 2.18 is defined with the combination of �−1/261/4
∗i ℎ2

. The values

of 6∗i and ℎ are known very precisely, however � is rather uncertain.

It is convenient to define a new parameter to express constraints on

evaporated PBHs

�′(") = �1/2
(
ℎ

0.67

)−2 ( 6∗i
106.75

)−1/4
�("). (2.19)

We show constraints on �′ in Figure 2.3. Almost over the complete mass

range, the strongest constraints are inferred from observations of the

big bang nucleosynthesis (BBN) [36], cosmic microwave background

(CMB) anisotropies [37], and extragalactic �-ray background (EGB) [36].

These limits are based on the assumption of PBHs evaporating due to

the Hawking radiation. Without Hawking radiation only the condition

ΩPBH ≤ ΩCDM, discussed for non-evaporating PBHs above, gives a

constraint for these masses. The dashed black line shows this 3� upper

limit using the recent value ofΩCDM mentioned above.

Figure 2.3: Constraints on evaporating

PBHs in �′. The colors group together dif-

ferent categories of studies. These works

assume the existence of Hawking radi-

ation. If it would not be applied, only

the dashed constraints, coming from

ΩPBH < ΩCDM, are valid. For a more

detailed description of the studies and

labels see the original graph in [1] and

references therein.

The introduced formalism of Hawking radiation in section 2.2 gives rise

to �-ray signals that might be detectable during the final moments of the

evaporation. We introduce a description of these signals in section 7.1.

Searches for this emission might not only prove the existence of PBHs

but also directly confirm the theory of Hawking radiation. As mentioned

above, the probed masses are ∼ 8.4 × 10
14

g. These works constrain the

rate of evaporations per effective search volume +eff. The probed volume

are typically small withmaximumdistances of the PBHs of Amax = O(1pc).
On these scales, the density of PBHs is assumed to be constant. The

evaporation rate in the local Galaxy is given by

Aburst =
=burst

+eff)eff

, (2.20)
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where =burst are the number of detected evaporations and )eff is the

effective observation time. These studies search for the integrated �-ray
signals from the evaporation bursts in the final Δ) of the lifetime of

the PBH. The integration time Δ) is an instrument specific parameter

which largely influence the signal-to-noise ratio. The optimal parameter,

yielding the best constraints , is typically determined by scanning various

parameters. Most relevant, however, are the best constraints for each

experiment.

Figure 2.4: Constraints on burst rate of

PBHs. Dark blue data points are peer-

reviewed published results while light

blue shows limits published in proceed-

ings. These come from Milagro [38],

HAWC [39], CYGNUS [40], Whipple [41],

Fermi-LAT [42], Tibet air shower array

[43], H.E.S.S. [44], and VERITAS [45].

Published prospects are shown in grey

for MAGIC, CTA [46], and 10 years of

observations with SWGO [47]. Adjusted

from [48].
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A current status of searches is shown Figure 2.4. We review the different

detector types for �-ray astronomy below in Chapter 3. The blue data

points show existing constraints, where the dark blue highlights peer-

reviewed publications. The grey data points illustrate prospects for

future studies. Detectors such as Milagro, HAWC, Fermi-LAT, Tibet
air shower array and SWGO benefit from their large fields of view

and dense duty cycle. However, Amax is small for in these works (e.g.

Amax = 0.02 pc for Fermi-LAT [42]). The most constraining wide FoV

upper limits are obtained with 3 yrs of data from HAWC with Δ) = 10 s

at ∼ 3.4 × 10
3

pc
−3

yr
−1

[39]. Prospects for 10 yrs of observations with the

Southern Wide field of view Gamma-ray Observatory (SWGO) yield an

improvement of more than one magnitude [47]. Imaging Air Cherenkov

Telescopes such as Whipple, H.E.S.S., VERITAS, MAGIC and CTA on

the other hand have significantly smaller FoVs. However, the depth Amax

is in the order of pc. The best IACT upper limits are currently set with

4924 h of H.E.S.S. data to < 527 pc
−3

yr
−1

[44]. As Δ) is not a parameter

of interest, it is also the overall strongest constrain on the evaporation

rate of PBHs.
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In the previous chapter we discussed how PBHs could directly and

indirectly emit photons during their final moments of evaporation. This

burst of photons might be detectable at the high-energetic edge of the

electromagnetic spectrum. The most stringent constraints on the evapo-

ration rate are obtained with �-ray observatories.

Space bound instruments can directly detect �-rays hitting the detector.

The effective collection areas of the detectors are small (< 1 m
3
). Thus,

they are only sensitive up to a few 100 GeV.

Due to the opacity of the atmosphere, �-rays can not directly be mea-

sured on the earth’s surface. They interact in the atmosphere inducing

atmospheric air showers consisting of particles propagating towards the

earth’s surface. The products of these showers can be detected which al-

lows indirect conclusions about the initial �-ray. We review the evolution

of atmospheric air showers in section 3.1.

Only very-high-energy (VHE, � & 50 GeV) �-rays induce sufficiently

large showers for a detection at earth with the current generation of

instruments. The main advantage of the ground-based �-ray detection

are the effective photon collection areas up to about 10
5

m
2
. The size

of the particle shower scales with the energy of the primary particle

the energy range allowing the detection of VHE particles. This makes

them very powerful instruments to search for PBH evaporation busts. As

shown in Figure 2.4, the most stringent existing limits are coming from

this family of experiments.

One type of ground-based �-ray detectors are the wide field-of-view

detectors. They are typically based on the water Cherenkov technique or

scintillation counters located at high altitudes of ∼ 4000 m a.s.l.. Existing

experiments are sensitive to events above & 10 TeV. Further they provide

an enormous field of view with radius about 45
◦
. The robust detectors

can also operate under moonlight enabling a dense duty cycle. However,

the reconstruction of the properties of the initial event from the recorded

information is challenging. The currently and previously operating exper-

iments based on water Cherenkov technique are HAWC [49], MILAGRO

[50]. The Tibet air shower array [51] is based on silicon scintillation

counters. The SWGO [52] will be a next-generation experiment based on

the water Cherenkov technique.

The alternative approach of ground-based �-ray astronomy is the imag-

ing air Cherenkov method. Imaging atmospheric Cherenkov telescopes

(IACTs) measure the Cherenkov light which is emitted when relativistic

charged particles propagate through the atmosphere. This work studies

the detection of PBHs with the VERITAS [53] experiment that is based

on this technique. We discuss this approach in more depth in section 3.2.

Other currently operating experiments using this technique areHESS [54]

and MAGIC [55, 56]. These will be succeeded by CTA [57] in the future.

Recently, also hybrid systems such as LHASSO [58] were developed.

These can combine the strengths of the individual methods.
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Figure 3.1: Air shower induced by a

100 GeV photon simulated in Corsika

projected in the xz-axis. This shower

mainly consists of the photons, electrons

and positrons (red tracks). [60].

3.1 Atmospheric Air Showers

IACTs are designed for detecting the Cherenkov light emitted from

VHE air showers. In subsection 3.1.1, we discuss the mechanism of

Cherenkov radiation. Eventually, the detected Cherenkov shower images

allow conclusions about the properties of the inducing event. Beyond the

energy and origin, especially the particle type is crucial. The target are

�-rays which are obscured by a large component of cosmic-ray induced

air showers. In the subsection 3.1.2 and subsection 3.1.3 we discuss the

shower development for both initial particle types.

3.1.1 Cherenkov Radiation

A charged particle passing through a dielectric medium excites the

surrounding molecules. As they return to the ground state, they re-emit

this energy in form of photons. These photons move at the speed of light

in the medium E2 = 2/=, where 2 is the speed of light in the vacuum and

= > 1 is the refraction index of the medium. In case particles moving at

speeds E? < E2 , the emitted radiation is spherically symmetric and thus

cancels out. However, high energetic particles can move faster than the

speed of light, E? > E2 . In this case, the emission gets asymmetric and

interferes constructively leading to a cone of light. The opening angle of

this cone is given by � = arccos(1/�=), where � = E?/2 is the speed of

the particle in units of 2. The value of = scales with the density of the

atmosphere. Thus, the opening angle increases towards the earth surface

up to � ≈ 1.3◦ at sea level.

The frequency spectrum of the Cherenkov radiation is described by the

Frank-Tamm formula [59]

%2�

%G %$
=
@2

4�
�($)$

(
1 − 22

E2

?=
2($)

)
, (3.1)

where G is the unit length traveled by the particle, $ is the frequency of

the light, @ is the charge of the particle, �($) is the permeability, and =($)
is the refraction index. The photon density of the emitted Cherenkov

radiation in the atmosphere peaks in the near-ultra violet (near-UV) at

wavelengths around 350 nm.

3.1.2 �-ray Induced Air Showers

In the atmosphere, VHE �-rays decay via pair production in the pres-

ence of the electromagnetic (EM) field of the nuclei. This produces a

pair of electron and positron, � → 4+ + 4−. The relativistic 4± pairs

subsequently produce photons through Bremsstrahlung. If the energy of

these photons is sufficient, they themselves can undergo pair production.

This alternating process of pair production and Bremsstrahlung yields

a cascade of EM particles. The 4± also undergo Coulomb scattering

with the molecules in the atmosphere. It causes a broadening of the

overall particle cascade. While propagating through the atmosphere, the

4± lose energy due the Bremsstrahlung and ionization of the medium.

Below the threshold energy �thresh ≈ 84 MeV, the ionization becomes the

dominating loss. Once this point is reached, the particle production falls
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Figure 3.3: Air shower induced by a

100 GeVproton simulated inCorsika pro-

jected in the xz-axis. Besides the EM com-

ponent (red tracks), also muons (green)

and hadrons (blue) are present. [60].

[62]: Group et al. (2020), ‘Review of Par-

ticle Physics’

off.

We show an example of a �-ray induced air shower in Figure 3.1. The

primary energy is 100 GeV. Each trajectory of a particle is visualized in

the xz-projection. As discussed above, the EM showers consist of photons,

electrons and positions. These particle tracks are visualized by the red

lines.
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Figure 3.2: Density of Cherenkov pho-

tons at an altitude of 1800 m a.s.l. for

vertical �-ray induced showers for dif-

ferent primary energies. Adapted from

[61].

The ionization caused by relativistic 4± in the air cause the characteristic

cone of Cherenkov radiation. We show the density of Cherenkov photons

at an altitude of 1800< a.s.l. in Figure 3.2 as a function of the distance to

the projected impact point of shower axis on the surface. The four graphs

denote four different energies of the initial �-ray. Up to about 130 m, the

density is roughly constant independent of the primary energy. Further

away, it is dropping rapidly. The detection of these signals using IACTs

is described in section 3.2.

3.1.3 Cosmic-ray Induced Air Showers

As mentioned above, the cosmic-ray induced showers are a huge compo-

nent of background for ground-based �-ray observatories. The cosmic-

rays themselves are dominated by hadrons, predominantly protons, and

a smaller population of cosmic electrons. These electrons also induce EM

air showers which are very similar in their evolution to the �-ray showers.

Due to energy losses from inverse Compton scattering and synchrotron

radiation, the electron flux drops steeply at around 1 TeV.

Contrary to EM cascades, for which the possible interactions are limited,

the hadrons interact via the strong force with the particles of the atmo-

sphere. This produces secondary hadrons as well as neutral and charged

pions. Themean lifetime of the neutral �0
is O(0.1 fs) [62], causing a rapid

decay �0 → 4+ + 4−. These 4± induce a EM component of the shower.

Due to the longer lifetime, relativistic �± interact in the atmosphere

producing further charged particles, mesons, muons, or neutrinos before

decaying. This leads to a hadronic component of the air shower.

Due to the large amount of possible interactions, the shower development

is less regular compared to EM showers. The produced pions typically

have larger transverse momenta. Thus the general spread of the hadronic

showers is expected to be broader. These effects are also represented in the

emitted Cherenkov radiation from hadronic showers: The typical signal

on the ground is wider and less regular. However, the EM component

of the showers might also cause an appearance very similar to �-ray
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induced showers.

Figure 3.3 shows an example of a simulated proton-induced air shower

with �init = 1 TeV. Contrary to the EM shower in Figure 3.1, also hadron

and muon components are present that are illustrated by the blue and

green tracks. These cause a larger lateral spread of the particles and more

irregularity.

3.2 Imaging Air Cherenkov Telescopes

The first detection of Cherenkov light produced by cosmic rays [63]

turned out to be the start of a new field, the Cherenkov astronomy. About

70 years later, it has matured and provided many exciting insights to

the VHE universe. IACTs are designed to detect the near-UV flashes of

Cherenkov light from air showers. Effectively, they are optical telescopes

covering the optical blue and UV light. However, the requirements

significantly differ from standard optical telescopes:

reflectors Very large mirror areas are needed to detect a large amount

of Cherenkov photons, which directly influences the lower energy

threshold of detectable events. Traditional optical telescopes have strict

requirements on the optical point-spread function (oPSF). For IACTs

however, an oPSF in the order of arcminutes is sufficient, which can be

achieved using a grid of individual mirror facets [64].

field-of-view Cherenkov signals from extensive air showers have an

extension of up to few degrees. The field-of-view of IACTs needs to be

at least of the same order to record these images. This requirement is

fulfilled using small focal lengths typically around 5 /� ∼ 1.0.

time resolution The Cherenkov signals from individual air showers

have a duration of about 10 ns. IACTs require O(ns) sampling speed to

record the evolution of these showers.

Figure 3.4: Image parameters of �-ray
images. [65].

With their O(ns) sampling, IACTs record the evolution of the intensity

over multiple samples. Integrating these traces yields the total charge

per pixel. To identify the pixels with relevant Cherenkov signals, a image

cleaning procedure is applied.
1
For �-rays, the signal shape in the camera

is approximately elliptical. This motivates their characterization using

the Hillas parameters [66]. They consist of

I length ; and width F of the ellipse
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I rotation angle  of the ellipse

I angular distance and azimuth angle describing the location of the

image’s center of gravity relative to the camera center in polar

coordinates

I integrated charge of all pixels aver image cleaning size B

These Hillas parameters are visualized in Figure 3.4. The projected major-

axis of the images points in the direction of the shower origin. An array

of IACTs can record images of the same shower from different angles.

This triangulation allows to estimate the primary particle’s origin and

core position, which is the projected impact point on the ground. The

impact distance ' described the separation of each telescope to the core

position. We show an illustration of this stereoscopic approach for IACTs

in Figure 3.5.

Figure 3.5: Illustration of the stereo-

scopic IACT technique. [64].

The stereoscopic parameters describe the joint set of images. Especially,

these are the mean reduced scaled width (<B2F)

<B2F =
1

#images

#images∑
8=1

F8 − FMC(', B)
�F,MC(', B)

, (3.2)

and mean reduced scaled length (<B2;)

<B2; =
1

#images

#images∑
8=1

;8 − ;MC(', B)
�; ,MC(', B)

, (3.3)

where F8 and ;8 are the widths and lengths of the images. These are

compared to prediction fromMonte Carlo (MC) simulated �-ray showers

in function of ' and B. The differences are normalized to the expected

spread derived from simulations �F,MC and �; ,MC, respectively. These

stereoscopic parameters provide crucial information that helps to in-

ferring the sought for primary particle attributes. In particular, <B2F

and <B2; are powerful measurements to discriminate between hadronic

and EM showers. We describe these reconstructions for VERITAS in

subsection 4.2.3 and subsection 4.2.4.
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In general, the performance of IACT arrays is improved with the to-

tal number of telescopes. This is due to the additional information in

the event reconstruction. However, the limiting factor for the effective

collection area is not defined by the total mirror size but the shower char-

acteristic instead. The showers can be recorded from anywhere within the

Cherenkov light cone. As shown in Figure 3.2, the cone area at ground

level is about 130 m.
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In Chapter 3 we discussed the concepts of ground-based �-ray astronomy.

This thesis employs data from the Very Energetic Radiation Imaging

Telescope Array System (VERITAS). It is one of the currently operating

IACTs. We describe its specifics and performance in section 4.1. In

section 4.2, we review the steps of the standard reconstruction, which

are relevant for this thesis.

4.1 The VERITAS Telescopes

The VERITAS instrument is an array for four Imaging Atmospheric

Cherenkov Telescopes. It is located at the Fred Lawrence Whipple Observa-
tory (31

◦
40
′
30
′′

N, 110
◦
57
′
07
′′

W) near Amado, Arizona, at an altitude of

1270 m.a.s.l. The construction of the first telescope started in 2005. The

inauguration of the entire array took place in 2007. Figure 4.1 shows a

photograph of the observation site with all four telescopes.

Figure 4.1: Image of the basecamp of the Fred Lawrence Whipple Observatory with the VERITAS telescopes. Photograph taken from [67].

4.1.1 Upgrades

Since 2007, VERITAS is observing the very-high energy (E� > 100 GeV)

�-ray sky [68]. The VERITAS collaboration steadily improved the sen-

sitivity of the instrument during its lifetime. Development took place

on the analysis techniques (e.g. see [69]) as well as on the hardware

[70]. VERITAS operated during three major epochs, separated by two

significant upgrades [71]. In its initial configuration, VERITAS operated

from 2007 to 2009. We refer to this epoch as V4.
In the summer of 2009, the relocation of telescope T1 started the epoch

V5. The T1 telescope in its new location is the foreground telescope in

Figure 4.1. The updated array geometry resulted in a notable improve-

ment of the significance.

The second major upgrade took place in the summer of 2012. After

this upgrade, the new photomultiplier tube cameras provided higher
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quantum efficiency. Furthermore, a new L2-trigger was implemented.

We discuss details of the trigger system in subsection 4.1.3. Since 2012,

VERITAS is operating in this V6 epoch.

In this thesis, we employ data from the V6 epoch. It corresponds to

the period with the highest overall sensitivity. Below, we review the

instrument specifications and performance for this epoch.

4.1.2 Optics and Camera

The four telescopes of VERITAS employ the same configuration. Each

telescope has a reflecting area with 12 m diameter in the Davies-Cotton

design [72]. It consists of 345 individually adjustable hexagonal mirrors

and has a focal length of 12 m. For the elevation range of typical obser-

vations (> 40
◦
), measurements of the optical point spread function (OPSF)

typically yield around ∼ 0.08
◦
for a 0.68% containment.

Each telescope employs a photomuliplier tube (PMT) camera with 499

pixels at the focal plane. Each PMT has a hexagonal Winston cone put on.

They reduce the dead space between the pixels and limit the contamina-

tion from stray light [73]. The cameras cover a total field of view (FoV) of a

diameter 3.5◦. Each pixel covers a patch with a diameter of 0.15
◦
of the

total FoV. In nominal operation, the PMTs are operated with an average

high voltage (HV) of ∼ 1000 V.

4.1.3 Data Acquisition and Trigger System

The PMT signals are passed to a pre-amplifier board and sent to an 8-bit

flash analog-to-digital converter (FADC) for data acquisition. It digitizes the

signals at a rate of 500 MHz and stores the pulses temporarily in a buffer.

Each pulse step increments a 2 ns interval. Deploying high- and low-gain

amplifiers increases the dynamic range of the FADC. The low-gain signal

is digitized for pulses in which the high-gain exceeds the dynamic range.

It is impossible and unnecessary to store the continuous data stream

during operation. A trigger system discriminates signals of Cherenkov

air-showers from random fluctuations of the night-sky background (NSB)

light and hadronic showers. VERITAS employs three trigger levels. The

digitized signals are read out and stored if they meet the criteria for all

three levels.

L1 The first trigger is applied to the individual pixels. The L1 requires

a pulse from a PMT to exceed a specific threshold. It deploys a

constant-fraction-discriminator (CFD) that ensures a stable trigger

timing [74]. The pulses after the CFDs are sent to the level-two

trigger.

L2 The second trigger is a pattern trigger on the telescope level.

Cherenkov light coming from �-ray induced air showers reaches

the camera in spatial and temporal coincidence. By contrast, the

position and timing of the L1 triggers due to fluctuations of the

NSB are uncorrelated. The L2 requires three neighboring PMTs to

receive an L1 trigger within a 5 ns time window in a telescope. This

level significantly suppresses accidental triggers due to the NSB

fluctuations.
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L3 The third and final trigger is an array trigger. It requires coincidence

L2 triggers from at least two telescopes within a 50 ns time window.

The muons in hadronic-induced air showers produce Cherenkov

light that can pass the L2 trigger. However, the spatial separation

of the telescopes makes it unlikely that the signal of single muons

triggers more than one telescope. The L3 trigger suppresses the

muon triggers by a factor of ∼ 10.

When an event fulfills all trigger conditions, parts of the buffered pulses

are written to the disk. The typical readout window is 16 samples. This

corresponds to a pulse duration of 32 ns.

4.1.4 Weather Monitoring

For the science analyses, an assessment of the data quality is crucial.

Clouds increase the opacity of Cherenkov light in the atmosphere. Thus,

they have a critical effect on the detection efficiency of gamma rays.

In order to identify these, three far-infrared (FIR) cameras on the observa-

tion site monitor the sky conditions. These record the sky temperature

during observations. One camera constantly monitors the temperature at

the zenith. The other two are attached to the telescopes T1 and T3 and

point in the same direction as these telescopes. Thus, they observe the

sky temperature directly in the center of the FoV. When clouds pass, the

temperature increases compared to the clear night sky. These signatures

reveal periods with clouds. For scientific analyses, this data is discarded.

We use the FIR time series in Chapter 6 to identify periods that are

affected by clouds.

4.2 Data Analysis

As described in section 3.2, IACTs provide indirect detection of �-rays via
the Cherenkov-radiation produced by EM cascades in the atmosphere.

The properties of the primary target need to be inferred from the recorded

information. In the following, we review the most critical steps of this

process. In this work, we use the VERITAS standard analysis package

EventDisplay in version v487.

4.2.1 Calibration and Signal Extraction

During each observing night, the so-called flasher runs are recorded.

For these, pulses of lasers illuminate all pixels. The analysis pipeline

determines the conversion factors of the amplitudes in the PMTs to the

number of photoelectrons (p.e.) and the timing offsets.

Due to the NSB, the recorded pulses include an inevitable baseline.

During data taking, forced triggers are injected at 1 Hz [75]. These record

the so-called pedestal events that do not contain Cherenkov signals. They

are used to estimate the baselines for each pixel. The variance of the

pedestal values of all pixels scales with the NSB level. A more significant

variance corresponds to a brighter background. This value is called the

pedestal variance ped_var. It is used later for image cleaning.

Only the samples of the 32 ns pulses that contain the ∼ 10 ns long
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Cherenkov signals are from interest. EventDisplay uses a double pass

method for extracting the relevant part of the signal. The first pass

provides an estimated arrival time of the Cherenkov signal for each pixel.

An integration window of 6 samples is used during the second pass that

integrates the relevant parts of the pulses. The subtraction of the baseline

from the pedestal removes the contribution of the noise. The integrated

charges for all individual pixels yield the image of the shower.

4.2.2 Image Cleaning and Characterization

A cleaning procedure is applied to identify the pixels with Cherenkov

signals from �-ray-induced showers. This procedure can remove trig-

gered images caused by noise or background events. However, �-like
background events cause images similar to �-rays. We describe the ad-

vanced background rejection mechanism in subsection 4.2.4.

EventDisplay uses a two-level filter with thresholds @1 and @2, where

@1 > @2. The total signal depends on the NSB, so the variable thresholds

incorporate the pedestal variance. First, the image pixels that have inte-
grated signals @1 > 5 ped_var are identified. Next, the border pixels are
searched adjacent to the image pixels. Their signals are @2 > 2.5 ped_var.

This procedure is robust under a wide range of conditions [76].

In section 3.2, we introduced the Hillas parameters to characterize the

Cherenkov images of air showers. These are determined after image clean-

ing with a log-likelihood fit of a two-dimensional normal distribution

to the pixels. Extrapolation beyond the camera edge allows recovering

partially contained images. This procedure increases the sensitivity for

events with high energies that typically correspond to extended images

in the camera and events at large offsets to the camera center.

4.2.3 Stereo Parameters

After the image characterization, the origins of the �-rays is reconstructed.
Under ideal conditions, the major-axes of two individual images of the

same shower intersect at the origin of the �-ray. The reconstructed origin

of an event is the mean of the intersection points of all image pairs.

In this approach, intersections of image pairs with larger sizes, higher

eccentricity, and larger relative angles between themajor-axes have higher

weights. This procedure also yields the impact parameter. It is the distance
to the center of the VERITAS array at which the projected shower axis

hits the ground.

To reconstruct the energy of the primary �-ray, look-up tables (LUTs)

are generated from events simulated with a Monte Carlo approach. The

VERITAS Collaboration employs CORSIKA (Cosmic Ray Simulation for

KASCADE) to simulate the development of the �-induced air showers

[77]. The response of the VERITAS detector is simulated with GrOptics

[78] and CARE [79]. In this thesis, we use LUTs based on CARE. They

map the energy of the simulated events to directly observable parameters

such as the size, the impact, the azimuth and elevation angle, the NSB

brightness, and the array configuration. The average reconstructed energy

of all individual images determines the reconstructed stereo energy.
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4.2.4 Background Suppression

A huge component of cosmic-ray-induced background showers domi-

nates the total number of recorded events and conceal the sought-for

�-ray events. However, the disparities in the shower development make

them distinguishable by the camera images. Boosted Decision Trees (BDTs)

are optimized to identify the differences in Monte Carlo generated �-ray
events and hadronic events from actual observations. These differences

are manifested in the mean-scaled width and length, the height of the

maximum Cherenkov emission, the impact parameter, and the size of

the second-largest image.

EventDisplay provides three sets of BDT cuts in the standard analysis:

soft, moderate, hard. They optimize the detection of �-ray sources based

on their spectra. The soft cuts are most suited for sources with a soft

spectrum, meaning a spectral index Γ . −3.5. The moderate cuts op-

timize the analysis for sources with −3.5 . Γ . −2.5. Finally, the best

performance for sources with Γ & −2.5 is obtained with the hard BDT

cuts. The softer the BDT cuts, the more of the lower-energetic events are

kept in the analysis. We define the energy threshold as the energy for

which the energy bias reaches < 10%. See details on the definition of

the energy bias in subsection 4.2.5. For typical VERITAS observations at

an zenith angle of 20
◦
, the soft BDT cuts yield an energy thresholds of

∼ 170 GeV, the moderate cuts ∼ 205 GeV, and the hard cuts ∼ 350 GeV

[69]. The exact energy threshold depends on the observing conditions

and instrument configuration.

4.2.5 Instrument Response Characterization

For the traditional analysis methods, Instrument Response Functions (IRFs)
summarize the characteristics of the instrument and the data analysis.

They describe the response of the reconstructed data to showers of known

physical properties. They are usually calculated based on Monte-Carlo

simulations. The IRFs allow interpreting the physical meaning of the

instrument-specific results. The VERITAS performance is described by

the following IRFs:

EA TheEffective Areadescribes the energy-dependent effective collection
area of the �-rays. It is the product of the collection area of VERITAS

and the detection efficiency for �-ray events. It depends on the

observing conditions and analysis settings and reaches up to ∼
10

5
m

2
.

ED The Energy Dispersion is a mapping between the reconstructed �rec

and true energy �true of the �-rays as function of �true. It is displayed

in Figure 4.2a. The energy-dependent width of the distribution is

called the energy resolution. It describes the uncertainty of the

reconstructed energy. Depending on �true, the distribution does

not center at the ideal value of 1. We define the energy bias 1 as a

deviation of the median from 1. The blue dashed line in Figure 4.2a

illustrates this bias.

PSF The Point Spread Function describes the uncertainty of the recon-

structed origin. The PSF is given by the radius A0.68 at which 68%

of all �-rays from a point source are contained. It depends on the

observing conditions, array configuration, and the energy of the
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events. The dashed blue line in Figure 4.2b shows an example of

the PSF. For most observations 0.05
◦ < A0.68 < 0.25

◦
.

RA The Radial Acceptance describes the detection efficiency as a function

of the distance to the center of the FoV. In contrast to other IRFs, it

is estimated from recorded data. It is roughly constant within the

inner ∼ 0.5◦ of the FoV and decreases further out.

10 1 100 101 102

Etrue / TeV
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E r
ec

 / 
E t

ru
e

10 5

10 4

10 3

10 2

10 1

Ev
en

t d
en

sit
y

(a) Event density of reconstructed energy relative to the true

energy �rec/�true as function of the true energy �true. The

width of this energy dispersion describes the uncertainty of

the energy reconstruction. The energy-dependent median of

this distribution is illustrated by the dashed blue line. The

difference of the median from 1 is called energy bias 1.
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(b) Fractional containment of events as a function of the

reconstructed energy and the radius around the origin. Each

energy column is independently normalized to 1. The blue

dashed line is the energy-dependent 68% containment radius

A0.68 which is the definition of the PSF.

Figure 4.2: Example of the PSF and energy dispersion. These graphs are valid for the center of the field-of-view for an observation taken

at 79
◦
elevation, 146

◦
azimuth, and a pedestal variance of 7.25.

The transient detection we implement in this thesis does not rely on the

instrument characterization. Instead, a deep neural network infers the

instrument characteristics from the data itself. We discuss the concept of

this novel approach in depth in Chapter 5. As part of the data preparation,

we use the PSF and ED, examples of which are displayed in Figure 4.2

4.2.6 Throughput Calibration

The optical throughput is the product of all factors of the camera and

instrument such as the quantum efficiency of PMTs and the mirror

reflectivity. The aging processes of the VERITAS instrument influence the

performance and reduces the throughput. This throughput is calculated

from dedicated calibration data. The standard event reconstruction scales

the signals of each pixel according to the monitored throughput [80]. For

this, theV6 epoch is subdivided intominor epochswhich applies different

throughput corrections. This approach allows consistent reconstruction

of the recorded events over the complete V6 epoch. However, the scaling

does not recover faint events close to the energy threshold. Consequently,

the energy threshold of VERITAS increases during the V6 epoch.
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Astrophysical transient events at very-high energies provide insight into

various fundamental phenomena. These include previously detected

transient phenomena such as �-ray bursts or flaring blazars and hypoth-

esized transient phenomena such as the evaporation of primordial black

holes. PBH evaporation can neither be detected in other wavelengths nor

be predicted. Thus, in contrast to many other transient objects, studies

need to deal with serendipitous locations and times. In a consequence, a

blind search for these events is the only option. In this thesis, we present

the implementation of a new transient detection approach for VERITAS

based on deep learning methods.

We review the concepts of deep learning methods in section 5.1. We in-

troduce the general concepts and expand to networks suited to deal with

sequential data. These are the heart of the search for PBHs implemented

in this thesis. In section 5.2, we review previous applications of deep

learning methods in astronomy. We present the deep learning transient

search concepts in section 5.3. We also give an overview of the total

analysis pipeline. This provides context to the discussion of individual

steps of the pipeline. Later chapters cover these separate parts in more

depth.

5.1 Deep Learning

Deep learning is a machine learning method based on artificial neural
networks (ANNs) with many layers. In recent years, deep neural networks
(DNNs) have often exceeded more conventional machine learning meth-

ods in terms of performance, scalability, and flexibility [81]. The universal

approximation theorem shows that sufficiently large ANNs can approxi-

mate any continuous function [82, 83]. DNNs consist of multiple layers

of neurons. Each neuron collects inputs and merges these into new

output. The layers of the DNN represent different levels of abstraction.

Internally, it generates the required representations from the raw data.

During training, it automatically discovers appropriate features from the

examples. This flexibility minimizes the assumptions required by the

human designer and can improve the results [84].

In subsection 5.1.1, we review the basic concepts of deep learning. We

also discuss the approach of optimizing these during training. In this

thesis, we work with sequential data. A specific type of DNNs, called

recurrent neural networks, is particularly suited for this input type. We

introduce these in subsection 5.1.2. As discussed below, they naively have

difficulty in learning long-term trends. We use an advanced sub-type of

these, called long short-term memory cells, to solve this. We introduce

this method in subsection 5.1.3.
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5.1.1 Deep Learning Basics

We show an example of a feed-forward neural network in Figure 5.1. This

network propagates information only from the inputs in the direction of

the outputs. The example consists of an input layer (0) two hidden layers
(; − 1 and ;) and output layer !. Each layer ; ∈ {0, . . . , !} has a number of

neurons :0 = =, :1, . . . , :! = < which values are D
[;]
8
. The neurons are

fully connected to all neurons in the adjacent layers. The weights between

the 8-th neuron in layer ; − 1 and the 9-th layer in ; are denoted by F
[;]
8 9
.

Each neuron is associated with a bias 1
[;]
8
, 8 ∈ {1, . . . , :;}. With these

notations, the inputs I
[;]
9

to neuron 9 in layer ;, is the linear combination

of the neuron values in the previous layer

I
[;]
9
=

:;−1∑
8=1

F
[;]
8 9
D
[;−1]
8
+ 1[;]

9
. (5.1)

We can rewrite this in matrix form

Figure 5.1: Schematic illustration of a

feed-forward neural network with layers

; ∈ {0, . . . , !}. The input x is passed to

; = 0. The neurons of adjacent layers are

connected by weights W. The value of

the 8-th neuron in of a layer is D
[;]
8
. The

outputs y are the values of the neurons

in the last layer !. Adapted from [85, 86].
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z[;] = W[;]u[;−1] + b[;] , (5.2)

where W[;] is the matrix of weights between the layers ; − 1 and ;, and

z[;], u[;] and b[;] are vectors. This linear combination z[;] is passed to the

non-linear activation function �[;] to calculate the output values u[;] of the
nodes

u[;] = �[;](z[;]). (5.3)

The logistic function, the hyperbolic tangent, and the rectified linear unit
(ReLU) are common alternatives for the activation function [87, 88].

We illustrate these functions in Figure 5.2. The computation of partial

derivatives is essential for the training of deep neural networks. The

outputs y of the network are the activated values of the final layer y = u[!].
The training process of DNNs updates the weights W and biases b to

minimize the cost function �. In supervised learning, the ideal result of

the DNN is the target ŷ. A common choice for the cost function is the

root mean square error (RMSE) between the target and the predictions

of the DNN

�(Ĥ , H) =
<∑
8=1

(Ĥ8 − H8)2
<

, (5.4)
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Figure 5.2:Commonactivation functions

for deep learning.
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where< is thenumber of outputs. Efficient optimizationof theparameters

of DNNs is possible using backpropagation [89]. In literature, the partial

derivative

%[;] =
%�

%z[;]
(5.5)

is often called the error. The error for neuron 8 in the output layer ! is

�[!]
8
=

%�

%D[!]
8

�′(I[!]
9
), (5.6)

where �′ is the derivative of the activation function of layer !. The first

term, %�/%D[!]
8

, measures how fast the cost changes as a function of the

output of this neuron. The second term, �′(I[!]
9
), describes the change

of the activation function at position I
[!]
9
. The error can be rewritten in

matrix form

�[!] =
%�

%u[!]
� �′(z[!]), (5.7)

where � is theHadamard operator for the element-wise product. This error

is iteratively propagated back to the earlier layers using

%[;−1] =
[
%[;]

]ᵀ
W[;] � �′(z[;−1]). (5.8)

The gradients of the trainable parameters, the weights W and biases b,
are given by

%�

%b[;]
= %[;] (5.9)

%�

%W[;]
= %[;] � u[;−1]. (5.10)

The training process updates these parameters in the opposite direction

of their gradients. This is the concept of the Gradient Descent Algorithm
[90]. The new value at iteration C for the variable G, where x can be
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weights or biases, is

GC = GC−1 − 
%�

%GC−1

. (5.11)

 is the learning rate and determines the rate at which the parameters

are updated. Eventually, this algorithm can minimize the cost function

�. The Adam optimizer provides a possible advancement of this method

[91]. It calculates individual learning rates for different parameters based

on the first and second moments of the gradients.

A typical problem in training DNNs with many layers is the vanishing
gradient problem. Backpropagation calculates the error of the first layers

as the product of the partial derivatives of the activation function. Some

activation functions, such as the logistic function or hyperbolic tangent,

have small derivatives. Thus, the calculated product of many small values

causes vanishing gradients. The training does not update parameterswith

vanishing gradients. This issue is addressed using batch normalization [92],

residual networks [93], or an activation function with larger derivatives

such as ReLU.

5.1.2 Recurrent Neural Networks

The neurons in recurrent neural networks (RNNs) form a circle. The results

of the output layer are fed back as input to the network. This feedback loop

carries information from previous states and can influence the upcoming

outputs. This varies from the previously discussed feed-forward network.

RNNs are particularly suited to deal with sequential data efficiently.

Previous work showered their outstanding performance in various fields

such as natural language processing [94–96], translation [97], and time

series analysis and forecasting [98].

We show an example of a deep RNN in Figure 5.3. It consists of a DNN

with ! layers with the cyclic connection. The input X and output Y
represents sequences of ) steps. The internal DNN calculates the hidden
state which is an abstract representation of the current state of the RNN.

It carries information about previous entries in the RNN. Thus, the new

input -C at each sequence step C is interpreted in the context of the

previous steps {1, . . . , C − 1}.
On the right side, we show the RNN in the unrolled representation. It

illustrates the cyclic passages of information that represent each step C.

It is important to note that the RNN consists of only one DNN shared

at all steps. The hidden state h[;]C−1
of each layer ; of the DNN is used to

calculate the hidden state h[;]C of the following step. Furthermore, it is

also passed to the following layer in the same step. In matrix form, the

hidden state at step C and layer ; is

z[;]C = h[;]C−1
W + h[;−1]

C U + b[;]
ℎ

(5.12)

h[;]C = �(z[;]C ), (5.13)

where U are the weights between the individual layers of the DNN,W
are weight for the hidden state of the previous step, and b is the bias.

Here we use h[0]C = xC to indicate the input to the first layer of the DNN.

In contrast to Equation 5.3, the RNN has the additional term h[;]C−1
W.
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[99]: Hochreiter (1991), Untersuchungen
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It carries information from one sequence step to the subsequent. The

output at each step is calculated from the final hidden state at layer !

with

yC = h[!]C V + bE , (5.14)

where the weights V and biases bE are additional model parameters.

=

h

Figure 5.3: Schematic illustration of a deep recurrent neural network. The left side shows a compact illustration of all sequence steps. It

has input vector X and output vector Y representing all time steps. We show an example of the DNN with four layers. At each step, the

hidden state h is an additional input. It forms a cyclic connection from the network to itself. The illustration on the right highlights the
nature of the RNN to represent sequential data. Each of the individual cells represents the identical DNN. However, the inputs xC change
at each step. Also, hidden states hC are updated at each iteration. The hidden state hl

t of layer ; is passed to the next layer ; + 1 and to the

same layer of the subsequent step C + 1.

In principle, the RNN can be trained using the backpropagation approach

discussed above. The total cost function is the sum of costs �C of the

individual steps in the sequence

� =
)∑
C=0

�C(ĤC , HC). (5.15)

We illustrate the backpropagation in Figure 5.4. The forward pass (solid

grey arrows) calculates the outputs Y. The dashed red arrows illustrate

the propagation path during the backward pass. The errors are not only

backpropagated through the network but also backward in the sequence

from step C to C − 1. As RNNs are often used to represent time series, this

process is in literature often referred to as backpropagation through time
(BPTT).

The gradients of the total loss � concerning the weights W are

%�

%W
=

)∑
C=0

%�C
%W

=

)∑
C=0

C∑
:=0

%�C
%ŷC

%ŷC
%hC

%hC
%h:

%h:
%W

, (5.16)

where %hC/%h: is calculated using the chain rule

%hC
%h:

=

C−1∏
9=:

%h9+1

%h9
=

%hC
%hC−1

%hC−1

%hC−2

. . .
%h:+1

%h:
. (5.17)

This hidden state ratio provides a challenge during training [99]. The

loss at the first step is proportional to the product of ) − 1 factors in the
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Figure 5.4: Backpropagation in recurrent

neural network. The solid grey arrows

illustrate operations during the forward

pass. The dashed red arrows show the

backpropagation path. The errors are

propagated back through the network

(vertical arrows) and in time (horizontal

arrows).
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structure

%hC
%hC−1

= �′(WhC−1 +UxC)W. (5.18)

In the case of large weights W, we get %hC
%hC−1


2

> 1, (5.19)

and the gradient exponentially approaches infinity. This problem is

referred to as the exploding gradient. Similarly, when the derivative of the

activation is smaller than 1 and W is also small, %hC
%hC−1


2

< 1, (5.20)

and the gradient approaches 0. In this case, we face a vanishing gradient.
These effects make it challenging to learn long-term dependencies with

classical RNNs [100]. This has motivated numerous works to avoid these

problems. Among them are gradient clipping [101], non-saturating activation
function [102], modified propagation paths of gradients [103], and gating
mechanisms [104, 105].

5.1.3 Long Short-TermMemory

The network we use in this thesis is based on the Long Short-Term Mem-
ory (LSTM) [104]. It uses the approach of gating mechanisms to evade

vanishing and exploding gradients of standard RNNs. It can efficiently

deal with long-term dependencies in sequences.

Instead of only one DNN, it consists of four networks interacting. We

illustrate them with the grey rectangles in the schematic illustration of

an LSTM in Figure 5.5. Each of these networks may be a DNN with

several layers itself. DNNs labeled with � are activated with the logistic

function, while the other network uses the hyperbolic tangent activa-

tion function. The black squares indicate element-wise operations on
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tensors, multiplication in the case of the Hadamard operator, or addition

otherwise. This illustration shows step C in the unrolled representation.

From the previous step, the hidden state hC−1 and the cell state cC−1 are

passed forward. We highlight the flow of the hidden and cell states in

the LSTM by the dashed and dotted grey rectangles, respectively. Three

gates control the values which are passed from one step to the next.

Tthe forget gate (orange) and the input gate (red) modify c. The output gate
(blue) updates the hidden state. The output of the LSTM sequence step is

computed from the updated h. In contrast to the basic RNN, controlling

the propagation through gates causes the information to flowmore easily

over many sequence steps.

in
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Figure 5.5: Gates in Long Short-Term

Memory network. The cell state 2 and

hidden state ℎ are modified in the LSTM

according to the forget, input, and output

gates. These gates consist of a total of four

DNNs that interact with each other.

Concatenating the hidden state hC−1 from the previous step H with the

input at this step xC yields the total input

mC = [hC−1 , xC] . (5.21)

First, this input is passed to the forget gate. The goal is to decide which

information from the previous cell state is not required in upcoming

steps. The gate removes this redundant information from the cell state.

The DNN calculates the vector

fC = �
(
W 5mC + b 5

)
. (5.22)

It contains one number for each entry in the cell state. Using the combined

input of the hC−1 and xC , it takes into account the earlier and new

information. With the choice of the logistic activation function, the values

of fC are in the interval [0, 1]. The element-wise multiplication updates

the cell state. Elements with 58 ∼ 0 suppress the information. Contrary,

values with 58 ∼ 1 preserve it for future steps.

The input gate decides which new information to add to the cell state

in the this step. It consists of two DNNs that both take mC as input. The

DNN with the hyperbolic tangent activation function calculates

c̃C = tanh (W�mC + b�) . (5.23)

This vector c̃C contains the candidate values that might be added to the

cell state. The network with the logistic activation function calculates

iC = � (W8mC + b8) . (5.24)
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Its values are in the range [0, 1]. iC filters which entries of c̃C are added for

the cell state. The forget and input gates together update the cell state

cC = fC � cC−1 + it � c̃C . (5.25)

The updated cC is passed to the next step of the sequence. It is also used

to calculate the new hidden state hC in the output gate. The DNN with

logistic activation function calculates the vector

oC = � (W>mC + b>) . (5.26)

It is a filter to determine the relevant entries of cC to the output. The tanh

function brings the values of the cell state into the [−1, 1] range. Finally,
multiplication with the filter yields the updated hidden state

hC = oC � tanh(cC). (5.27)

The critical factors for exploding and vanishing gradients during BPTT

in standard RNNs are in Equation 5.18. For LSTMs these factors are

modified into the form of

%c
%cC−1

=
%fC
%cC−1

cC−1 + fC +
%iC
%cC−1

c̃C−1 +
%c̃C
%cC−1

iC . (5.28)

The forget gate predominantly controls the information passed at each

time step. Along with the fact that Equation 5.28 consists of four additive

terms, it can balance the gradients in the LSTM. This way, LSTMs can

efficiently avoid the exploding and vanishing gradient problems.

5.2 Deep Learning in Astronomy

Recently, deep learning methods attracted considerable attention in as-

tronomy. In ground-based �-ray astronomy, previous work proved its

potential for event reconstruction. These works frequently use convolu-

tional neural networks (CNNs). These DNNs are suited to deal with data

in the form of images. As discussed in subsection 4.1.3, the raw data of

triggered events are the sequences of samples for each pixel. The samples

from all camera pixels form a sequence of images of the air showers.

Recurrent CNNs (CRNNs) can deal with sequences of images [106].

Previous studies used these CRNNs for the background suppression of

IACT data [107–110]. Similarly, approaches also exist for the energy and

direction reconstruction [111, 112].

In the broader context, astronomers often use deep learning to identify

and classify various sources. Feed-forward networks, CNNs, and RNNs

all show enormous potential for these tasks [113–116]. The ideal choice

usually depends on the input data type in each survey. These methods

can consider time series, morphology, or energy spectra for classification

[117]. However, it is challenging to interpret the classification results as

statistical significance [118].

Deep learning also proved outstanding capabilities in identifying tran-

sient astrophysical sources. The critical time dependency for these sources

usually makes RNNs a suited method [119]. Frequently, studies use bi-

directional RNNs that can access information from the future and the

past at any time step [120, 121]. These are suited for identifying transient
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objects with fully recorded light curves. However, it does not conform to

the real-time detection of transients. Contrary uni-directional RNNs only

use inputs from time steps previous to potential transient signals. This is

a powerful method for the real-time detection of transient sources [122].

A mismatch between the training and inference data can cause problems

for DNNs. An analysis for source detection must include all systematic

effects during the training. Also, the composition of the training data,

i.e., the proportion of different effects, influences the performance. Tra-

ditionally, it requires careful modeling of the detector response under

all possible observing conditions. An alternative approach is using data-

driven methods. Rather than training on a synthetic dataset, they employ

actual observational data. Data-driven approaches can be utilized for

unbiased anomaly detection [123, 124].

A novel method for anomaly detection in IACT observations was pro-

posed in [125]. It is a data-driven approach that utilizes an LSTM ar-

chitecture. It couples the outputs of the DNN to a calibration pipeline.

This pipeline assigns a statistical significance to the results. In simulated

data, this method yields promising results for identifying low-luminosity

�-ray bursts.

5.3 Search Strategies

This thesis uses deep learning methods to search for PBH evaporation

signals in archival VERITAS data. Our approaches are an extension of

the methods developed in [125]. They are developed to be used for real

time transient detection and for searching for signals in archival data.

Thus, it utilizes uni-directional RNNs. In this thesis, we implement an

anomaly detection to search for the expected transient signals. This work

is the first application of this method on actual IACT data. Compared

to previous work dealing with simulated data, we need to define new

search strategies to perform the search on the complete dataset. In the

following, we introduce the concepts of this search. More details are also

given in the corresponding chapters later in this thesis.

The core of the method is an RNN using an LSTM architecture that we

illustrate in Figure 5.6. It is similar to the architecture discussed in [125].

The transient detection is implemented in the python package trans_-

finder. It uses the implementation of LSTM networks in the popular

packages TensorFlow [126] and Keras [127]. We decompose the RNN into

an encoder and decoder phase with �enc and �dec steps, respectively. In

total, the RNN represents a time series with �RNN = �enc + �dec steps. The

inputs I are the number of event counts at each time step. In this theses,

we consider events after the standard VERITAS background suppression

which we discussed in subsection 4.2.4. The counts are separated into

several energy bins �.
The encoder steps represent the background interval. It is a sequence of

�enc event counts representing the time series before a transient signal

occurs. The LSTM updates the hidden state at each time step. After

the last encoder step �enc, it represents an encoded description of the

background counts.

We duplicate this hidden state and use it as the input to the time steps of

the decoder. The decoder uses the abstract information provided by the

encoder to predict the background counts B. This prediction estimates
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the expected counts assuming no transient signal occurred. The hidden

state passes additional information about previous predictions from one

step to the next. This information helps to model also predictions with

trends spanning several steps.

In this thesis, we add a probabilistic layer to the background predictions.

We implement it with the TensorFlow Probability package. With this

addition, the network does not directly estimate the value for the back-

ground. Instead, it optimizes a probability distribution to describe the

input data. We use a normal distribution characterized by the mean and

uncertainty. With this approach, we directly have an estimate for the

uncertainty of the predicted counts. To evaluate the network, we sample

from the estimated distribution. This sampling can also be repeated

several times. The resulting predictions for the background counts varies

according to the scale of he distribution.

A transient signal T causes the observed number of �-like events to be

S = B + T. We can detect the transient source when S is significantly

higher than the expected background. We define a test statistic that is

sensitive to increased signals. A calibration pipeline converts it into a

statistical significance. We discuss more details below.
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Figure 5.6: Schematic illustration of the RNN architecture implemented in trans_finder. The network utilizes an LSTM that consists

of an encoder and decoder phase with �enc and �
dec

steps, respectively. The RNN represents a time series with a total of �RNN steps.

During the encoder steps, the RNN calculates the hidden state. It carries encrypted information about the context of the background

data. The decoder is the period during which the method can detect a potential transient signal. We use the hidden state of the encoder

as input to the decoder. The RNN predicts the expected background counts B during the decoder sequence. We define a test statistic

(TS) from the estimated and measured counts S. The TS increases as the signal counts rise compared to the background. A calibration

pipeline transforms the TS into a statistical significance. Adapted from [125].

The RNN is used in various ways depending on the run phase. We

illustrate the analysis pipeline in Figure 5.7. It is subdivided into three

main run phases, training, calibration, and inference. Each of these phases

employs actual observational data as input. In Chapter 6, we implement

a tool that automatically assesses the data quality for VERITAS. We select

the suited data for each run phase with this python package. Each of

the phases requires a specific data preparation pipeline. For these, we

implement additional run phases prep_train, prep_calib, and prep_infer. The
general data pre-processing is common for all run phases. It generates the

time series �RNN that are the inputs to the RNN. The series’ main features
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are the number of �-like events during each time step. As mentioned

above, we separate these into different energy bins. Furthermore, we also

define multiple regions of interest (ROIs) within the FoV of VERITAS.

As we discuss below in section 8.1, the size of these ROIs can increase the

signal-to-noise ratio for the expected transient sources.
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Figure 5.7: Illustration of the data preparation and analysis pipeline. The three main phases are training, calibration and inference. The
pre-processing converts the reconstructed �-like event lists of VERITAS into the required input to the RNN. For the training and

calibration phase, a background sample is required, i.e., without possible transient sources. The shuffling algorithm removes these

possible contaminants from the dataset. During the training phase, the RNN learns to predict the background counts during the decoder

steps. The trained network is applied to the background dataset during the calibration phase. It yields the TS distribution for the

background data. This distribution gives the frequency a certain TS value is reached under the background hypothesis. We use it to map

the TS to a ?-value. In the inference phase, the search for transient signals is performed. The trained RNN evaluates the unscrambled

data, and the resulting TS values are converted to ?-values using the calibration. Adapted from [125].

The first run phase is the training of the LSTM-RNN.We require a dataset

without transient signals to learn predicting the background counts

during the decoder steps. For this data-driven approach, we generate this

background dataset using a shuffling algorithm on real data. It smears

out transient contributions on the timescales we investigate in this thesis.

Details of the implementation are discussed in Chapter 8. The advantage

of this data-driven method is that it does not rely on modeling IRFs.

Instead, the RNN extracts the system’s characteristics from the training

data. In order to do this efficiently, we require additional parameters

besides the �-ray counts. These characterize the relevant changes of the

observing condition, which the network can learn during training. These

auxiliary parameters are selected from a study of the correlation of the

parameters to the observed event rates. We describe this in more detail

in section 9.1.

As discussed in section 5.1, during training, the parameters of the LSTM

are adjusted tominimize the cost function.Workingwith the probabilistic

network, the cost to optimize is the negative logarithmic probability.
1
We

apply the Adam optimizer [91] in this work. The shuffled training data

represents sequences of pure background. The trained RNN can predict

the expected number of background �-ray counts. With the auxiliary
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parameters, the RNN can deal with changing observing conditions.

During the calibration phase, we work with a background dataset gen-

erated in the same way as for the training. We use the trained network

to predict the background for these series. At each decoder time step

� ∈ {1, . . . , �dec}, the predicted background and signal counts consist of

one number per energy bin �. We denote these as �(�, �) and ((�, �), re-
spectively. Further, we define each energy bin’s fundamental test statistic

(TS)

TS(�) =
�dec∑
�=1

((�, �) − �(�, �)√
�(�, �) + 1

, (5.29)

where the 1 in the denominator is added to stabilize the TS for small

(or zero) background counts. It increases when the relative difference

of the signal to the background is higher. Thus, the TS measures the

strength of the transient signal. However, it can not directly be inter-

preted as statistical significance. The background dataset determines

how frequently a specific TS value is reached under the background

conditions. Comparing the estimated and actual background directly

considers the precision of the RNN predictions. This frequency yields

a mapping of TS(�) to a ?-value. The ?-value describes the probability

that a pure background fluctuation caused this observation. The ?-value

is between 0 and 1. A smaller ?-value corresponds to a higher statistical

significance.

This mapping from the TS to the ?-value depends on the background

characteristics. Primarily, the relative standard deviation depends on

the number of background counts �. With a simplified assumption of

a constant Poisson distribution, the expected uncertainty is � = 1/
√
�.

Furthermore, the quality of the estimate of the background by the RNN

can vary for different observing conditions. An accurate calibration needs

to consider these effects. We split the observational data into meta bins.
These account for the most significant changes in the background rates.

We then run the calibration independently within each of these bins.

When a signal contribution is found in various individual ?-values,

combining these into one ?-value can increase the overall detection sig-

nificance. We can construct a new test statistic TScombo as a combination

of individual ?-vadiscardedlues in the form of

TScombo = −
∑
8

log ?8 , (5.30)

where 8 denote the individual ?-value. Using the background dataset, we

can map TScombo again to a probability ?combo. We construct a calibration

pipeline that uses this combination on several levels. These steps combine

the TS values from the individual energy bins and different ROIs. We

discuss more details of this pipeline in section 9.3.

During the inference phase, we use unscrambled input data to conduct

the search for transients. The RNN gives the prediction of the back-

ground counts. With this estimate, the TS is calculated and mapped to

a significance of detection. Here, also the corresponding meta bins are

considered. During this phase, we want to investigate the entire dataset.

This also includes edge cases at the beginning and the end of observing

runs. As transient signals only can be detected during the decoder, we

add padding data consistent with the background. These padding steps
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fill the required steps to investigate the whole run. Furthermore, we do

not know a priori when to expect a transient signal. In order to search

consistently within the complete data, we implement a sliding window.

This sliding window of length �RNN moves through complete data and

generates the input sequences. In this approach, the method checks each

sequence for transient signals. We discuss the details of the padding and

the sliding window in section 8.3.

The detection efficiency if crucial for constraining the rate of PBH evap-

oration. For this calculation, we simulate signals of PBH evaporations.

Folding these with the VERITAS IRFs yields the potentially detectable

signals.We generate one set of simulations for eachmeta bin. This guaran-

tees that the full range of observed parameters is considered. We discuss

the details of the simulations in Chapter 7. In trans_finder, we add a

run phase prep_sims in which we apply the same data preparation to bin

the simulated events in space, energy, and time. As we have methods to

generate a shuffled background dataset from actual data, we do not need

to simulate the background. In the inject_sims phase, we superimpose

the prepared simulated signals to the background from shuffled data.

Finally, we run the inference for the simulated data in the infer_sims run
phase. Compared to the normal inference phase, additional information

about the simulated signals is written to the output. With this additional

information, we estimate the detection efficiency as a function of the

source parameters.
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The processing and validation of the data quality are critical point of the

analysis. Existing tools provide the possibility to perform these manually.

This thesis performs an analysis on large set of observing runs recorded

by VERITAS during several years of science operations. On these scales

the manual standard processing and data quality monitoring tools are

difficult to use. Thus we develop automatic approached for these tasks

that can work for large set of observations. First we discuss the scope of

this analysis in section 6.1 and how we automatize the data processing in

section 6.2. The new approach for the automatic data quality monitoring

is presented in section 6.3.

6.1 Analysis Scope

In subsection 4.1.1 we discussed the major upgrades of the instrument.

In this thesis, we consider all data which was recorded during the latest

major epoch V6. The first data in this period is recorded on September 15,

2012 and the latest data included on May 4, 2021. Only data which was

recorded for scientific use is analyzed. In total 20864 science runs were

recorded during this period. This data is analyzed using the standard

VERITAS event reconstruction methods. The approaches of the data

processing and selections are discussed below.

6.2 Data Processing

The data preparation for the input to the neural network for the anomaly

detection, which is described in Chapter 8, requires the reconstructed list

of events. Previously, we described the relevant reconstruction methods

of the VERITAS analysis package EventDisplay v487. The individual

analysis steps are divided into various subprograms.

download Download raw data from archive server.

evndisp Calibrate and parametrize the camera images.

mscw_energy Calculate stereo parameters.

anasum Apply background suppression.

Each step relies on the previous results. Existing analysis scripts run the

analysis for runs based on lists of observing runs. The generation of the

run lists is the duty of the analyzers. This is a well established approach

for the standard VERITAS analysis which usually has a limited list of

runs for specific sources. However, in this analysis all science runs within

almost nine years of operations are taken into consideration. On these

scales, the standard approach is not practicable as we deal with a large

list of runs and many different sources. We develop bulk_processing

which is a collection of python and bash scripts to perform the VERITAS

analysis on large scales. Its objective is to automatically generate generate

run-lists and manage running the different phases of the analysis. When
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1: This general assessment of a run de-

notes major problems during the data

taking. See also section 6.3.

[128]: Deil et al. (2017), ‘Open high-level

data formats and software for gamma-

ray astronomy’

running the scripts, a query of the VERITAS database is performed. This

yields a relevant science runs within the considered period. The paths

to the directories in which the raw data and analysis files are expected

are specified. By inspecting these directories, it we collect, which files

are currently on the disk. We then can decide, which analysis steps are

possible to start for which runs. If no files from one run are currently on

disk, the raw data is downloaded from the archive server. Otherwise,

the succeeding analysis step can be started until the anasum stage is

reached. For the analysis stages, also the log-files are scanned to identify

possible errors during the analysis. In the case of errors at a particular

stage, the analysis does not proceed further for this observing run. This

can happen due to corrupted files, missing information in the database,

or other unexpected events during the analysis. For the sake of time, we

exclude these runs from this analysis. With these disk-checks we generate

lists of runs that are submitted for each of the analysis stages. These

run-lists are a subsets of the initial list. Checking the disks and starting

the analysis stages is an iterative process until all files reached the final

analysis stage. The download for the required runs is started during the

first iteration only and runs in the background. The total amount of runs

that are analyzed is shown in Table 6.1.

Table 6.1: The number of runs for each

analysis stage. These still contain runs

with errors that are excluded at each

following stages.

stage number of runs

total 20864

evndisp 19329

mscw_energy 17679

anasum 17599

VERITAS recorded 20864 science runs during the period considered in

this thesis. These also include runs with bad data quality, especially also

runs labeled as do_not_use1. Besides bad weather, this can also hint at

corrupted observations or missing data. Thus we expect a significant

part of these to fail. A total of 17619 runs are processed successfully to

the final stage of EventDisplay anasum. We use soft BDT cuts for the

analysis, which provide the lowest energy threshold. The final list of

runs is converted to the DL3 format [128]. It is a VERITAS independent

data format and thus suited for this analysis. Besides the event list, it also

contains the VERITAS-specific instrument response functions IRFs for

this observation. These are used later in the simulations of PBH signals

described in section 7.2. In total, 16773 runs were converted successfully

into the DL3 format. The majority of the missing 846 runs are lost due

to observing conditions outside the IRF axes. These runs have special

observing conditions, which would not be selected for this analysis later

on. The careful selection of observing runs is described in the section

below.

6.3 Data Selection

IACTs are highly complex instruments. Various effects influence their

performance. The hardware setting, such as the number of participat-

ing telescopes, is a crucial parameter that might change between one

observing run and the next. Also, the observing parameters such as the el-

evation of the pointing position influence the performance. Furthermore,
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2: The far infrared temperature intro-

duced in subsection 4.1.4 provides an

independent monitoring of the weather

conditions. As described below, both are

used in the data selection.

hardware issues or bad weather can influence a run in total or partly. It is

crucial to select observations that correspond to the instrument’s stable

performance in this work. It requires a primary selection based on the

instrument setup and an assessment of the data quality over time. Time

periods that are affected by uncontrolled influences need to be excluded

from this analysis. It might require excluding total observing runs to

achieve this. However, when only part of an observing run is affected,

good periods can still be used for the science analysis. In these cases, it is

possible to specify time cuts that mask the parts of the runs with poor

conditions. With this approach, we do not need not to exclude data taken

under stable observing conditions needlessly.

The VERITAS database stores information associated with the instru-

ment’s operations. It keeps track of the instrument’s settings and the

observing conditions during the operation. The database parameters

listed in Table 6.2 play a crucial role in the selection of the data for this

work. Among these is the type of observation (science, calibration, or

engineering run), the start and end times of the runs, the high voltage

setting, and the operating telescopes.

The observers who operate the instrument during observations add

further information. They are responsible for manually assessing the

weather conditions and noting them in the database. Here A denotes

perfect observing conditions while D is the worst possible ranking.
2

Furthermore, they can add comments when they notice unexpected

behavior or events during the observing runs. At the end of each night,

iterating DQM-shifters perform a manual DQM. They add information

to the VERITAS database, such as the status and comments about data

quality. The status is a general assessment of the runs and can be one of

the following options:

good_run run can be directly used in science analysis

minor_problems minor problems encountered during operation but

no further actions required

needs_adjustments run can be used for science analysis after adjust-

ments, e.g. remove part of the observation

do_not_use observation should not be used for science analysis

They also have the option to suggest time cuts if necessary. While this

information provides essential information about the data quality, the

frequent change of the shifters can lead to inconsistent treatment of typi-

cal influences. Thus these alone are not sufficient for the data selection

for this thesis. Instead, we require a more consistent approach to assess

the data quality and set necessary time cuts.

This work considers all 16773 observing runs between September 2012

and May 2021 that were processed successfully and converted into the

DL3 file format. Performing a manual data check is not feasible on such

a large dataset. It would be very time-consuming and might still be a

significant source of inconsistency. Instead, we develop a novel automatic

DQM system for this work. vts_datacheck is a python package that

assesses the quality of the runs based on information available in the

VERITAS internal database. On one hand, we collect all the required

information about the runs listed in Table 6.2. We preselect runs based

on these instrument settings and existing DQM information. On the

other hand, we add advanced diagnostics to identify periods with good

and bad data quality. We automatically determine new time cuts to
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Table 6.2: Basic database information

that is used to identify the basic instru-

ment setup and observing conditions for

a given observation. These parameters

provide a preselection of the observing

runs.

Entry Value Comment

observation type science

general instrumen settingshigh-voltage ' 1000 V

operating telescopes 1, 2, 3, 4

Weather

train: A
infer: A, B

filled by observer

observer comments

train: none
infer: —

status good_run

filled by DQM shifter

DQM comments

train: none
infer: —

DB time-cuts none

consistently recover as much of the stable observation periods as possible.

We avoid judging the data quality based on high-level results, such as the

background event rates. These are directly used in the transient detection

method. Thus, a data selection based on this information would come

with the risk of introducing a bias in the analysis.

The pre-selection of runs is summarized in Table 6.2. We only include

science runs in which the instrument operated with all four telescopes

and nominal high-voltage settings. Further, we only consider runs that

are labeled good_run in this work. We use different sets of criteria for

the weather label, the comments, and the time-cuts in the database for

different phases of the deep-learning transients search. These database

entries do not necessarily correspond to effects on the data quality for

these runs. Nonetheless, they can still indicate abnormal behavior or

external influences. Especially for the training and calibration phases

require a dataset with good observing conditions. Otherwise, the re-

duced background event rates might bias the method. Thus, more severe

selection cuts are applied for these phases to have a high efficiency of

removing these. Primarily, we only include runs marked with perfect

weather label (A), no comments in the database, and no time-cuts in the

database in these phases. When we perform the actual search for PBH

signals in the inference phase, we use less conservative selection criteria.

As indicated in Table 6.2we also include datawith Bweather andDQMor

observer comments in the database. The following DQM assessment still

identifies typical influences on this dataset and sets time cuts accordingly.

However, even including periods with not perfect conditions is not as

harmful in the inference phase. In these observations, the background

event rates are lower and thus cannot create a false positive detection.

This preselection provides a good starting point for the analysis. How-

ever, it is still possible that the dataset contains periods with unstable

conditions. Typical influences on the data quality are

I spikes in the rates (e.g., due to illumination of the camera)

I clouds passing the field of view during operation

I background illumination changes (e.g., due to Moonrise).

These periods should be excluded using time-cuts such that the good

parts of the runs can still be used in the analysis. The database contains

time series data which allows assessing the quality of the observations
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as a function of time. Among these are

I L3 array trigger rate AL3

I Far infrared (FIR) temperature of the sky )FIR

I elevation and azimuth of the pointing position of the array.

Furthermore, we add information from an external database about the

position and illumination of the Moon during each observation. The

previously discussed L3 rate is stored with a frequency of 1 Hz in the

database. As many underlying effects are folded into it, the L3 rate is

a good proxy for the stable performance of the instrument. During an

observing run, the L3 rate can change for expected reasons such as a

change in the elevation of the pointing position. However, if the trigger

rate is not stable during the run, i.e., it contains spikes or has a significant

gradient, it can also indicate problems during the observation. These

include hardware issues, bad weather or external influences such as an

flashing of the telescopes. Thus, it provides an excellent starting point to

search for these impacts.

The FIR temperaturemeasures the sky’s temperature in the samedirection

as the telescopes are pointing. As clouds have a higher temperature than

the clear sky, the FIR temperature can specifically help to identify these

as they pass the field of view (FoV) The Moon and pointing information

provide additional information to help understand changes in the L3

rates. During the Moonrises and sets, the brightness of the night sky

background changes, which influences the trigger rates. We implement

an evaluation of these time series to identify the periods in which the

instrument’s performance might be affected by typical effects.

The runs are first checked for influences by spikes or drops, next for

clouds that affect the data quality and changes due to the Moonrise or

set. Finally, we validate that the periods that survive these checks are

consistent with the expectation for stable observing conditions.

6.3.1 Spike Detection

Spikes or drops are a sharp increase or decrease of the L3 rate in a

short O(s) time scale. These might be caused by a sudden illumination

(e.g., from headlights) of at least one of the cameras. They affect the

sensitivity to �-like events in this period. The short time effects of spikes

in the L3 rate can be superimposed to L3 changes on slower O(min) time

scales. Thus, we first apply a correction for slow effects to the L3 rate.

We resample the L3 rate to 60 seconds and calculate the median rate

<43(AL3)8 in each of these new bins 8. This median is subtracted from the

second-wise initial samples within the new bin

AL3,corrected = AL3 − <43(AL3)8 (6.1)

Figure 6.1 illustrates this procedure. The grey curve in Figure 6.1a shows

the initial data, which has at least one clear spike and a slower change

in the L3 rate at the end of this observing run. The graph in Figure 6.1b

shows the distribution of the L3 rate corrected by theminute-wisemedian.

Except for very rapid changes (i.e., spikes and drops), the corrected L3

rate roughly follows a normal distribution N(�, �). We estimate this
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(a) Initial L3 rate during a run that contains a spike that is

superimposed to a slower change. The resampled distribu-
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Figure 6.1: Example of the L3 rate correction for the spike detection and the definition of outliers from this distribution.

distribution with

� = @0.5 (6.2)

�L3 = @0.84 − @0.16 , (6.3)

where @8 are the 8-quantiles of the AL3,corrected distribution. In the next

step, we define outliers as an 5�L3 deviation from the median of this

distribution. The shaded grey area of Figure 6.1b shows this 5� interval.

Each outlier denotes the L3 rate in a one-second window. We control

the maximum total effect on the analysis by the number of consecutive

outliers that define a spike or drop. For this thesis, we exclude spikes that

last longer than 10 % of the time steps of the analysis. This corresponds to

a minimum duration of 2 sec. See also Chapter 8 for the definition of the

time steps. We add time cuts around each detected spike or drop with a

buffer of 15 sec. The result of this procedure for the example shown above

is illustrated in Figure 6.2. One period with three consecutive outliers

was identified. These are covered by the time cut, which spans the orange

shaded area.

Figure 6.2: The orange circles are the

three consecutive outliers that are iden-

tified. The shaded grey area illustrated

the set time cuts around this spike. It

includes an additional 15 seconds before

and after the outliers.
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6.3.2 Cloud Detection

During operations, clouds are the most crucial weather effects that can

change the data quality on O(min) timescales. They are relatively opaque

to the Cherenkov light, which can drastically reduce the rate of �-like
events. The strength of the effect of clouds depends on the altitude of the

cloud and the energy of the primary particles. If the shower maximum is

above the clouds, the Cherenkov light is absorbed and thus the sensitivity

of VERITAS decreases. The altitude of the shower maximum is lower for

high primary energies [129]. In general, � rays with energies of view TeV

are little affected by clouds at high altitude of ∼ 10 km. The lower the

cloud is, the larger is the fraction of absorbed Cherenkov photons [130].

At these primary energies and cloud altitudes of 7 km already ∼ 40% of

photons are diminished. This effect is more significant for lower primary

particles [131].

For this thesis, any data affected by clouds must be excluded to select

periods with stable conditions. As mentioned above, an increase in the

FIR temperature can indicate a cloud. We employ data from FIR camera

attached to the T1 telescope that monitors the temperate in the FoV of

VERITAS. A reduced L3 trigger rate is expected due to the increased

opacity. Clouds that affect the data quality, are detectable in the FIR

temperature and the L3 rate simultaneously. The effect of clouds on these

two observables over the course of an observing run is illustrated in

Figure 6.3.
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Figure 6.3: Example of the effect of

clouds on the L3 rate and FIR tempera-

ture.

As the absolute scales and the expected variances are different for both

metrics, we first norm them independently. The distributions are shifted

by their corresponding medians <43(AL3) and <43()FIR) which corrects

for the different scales. To compare the variations of the distributions,

we normalize them to the expected variance for good data. We select a

list of 5975 observing runs labeled as good_runwith stable L3 rates, no

database comments, A weather, no database time cuts, and run duration

above 10 minutes. This corresponds to the preselection for training the

training dataset described below in subsection 6.3.5.

The distribution of the L3 rate and the standard deviation for the selected

runs are illustrated in Figure 6.4a. For runs with stable observing condi-

tions, the L3 rate follows a Poisson distribution. Thus, its expected stan-

darddeviation is a goodproxy for normalization =L3 = �L3,expected =
√
AL3.

The orange dashed curve in the graph illustrates this theoretical expecta-

tion. The most frequent runs are in good agreement with this expectation.

However, many runs also have up to ∼ 30% percent higher standard
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(a) Distribution of L3 rate AL3 and its standard deviation

�L3. The orange dashed curve indicates the expected value
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√
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Figure 6.4: Distributions of L3 rate and FIR temperature for the 5975 selected runs to determine the normalizations of these parameters.

deviation. These are runs in which the L3 rate changes during the run.

These happens due to changes in the NSB level or the elevation of the

pointing position. These effects are handled in the VERITAS standard

reconstruction methods and thus the runs are considered suitable for

science analysis.

The FIR temperature adds independent measurements for the cloud

detection. It helps to discriminate whether the increased �L3 is due to

the expected variations or rather because of clouds within the FoV. In

order to estimate the standard deviation of the FIR rate �FIR, we calculate

the root mean squared (RMS) of all runs in the run list. The RMS can be

used as an approximation of the standard deviation. The distribution

of �FIR is given in Figure 6.4b. Due to the restrictive selection cuts for

this run list, the majority has good observing conditions. We rarely

expect effects due to clouds in this dataset. We select the 0.95 quantile

@FIR, 0.95 of this distribution for the normalization =FIR. Selecting @FIR, 0.95

instead of @FIR, 0.68 ensures that good runs are not removed unnecessarily

later on. Clouds are expected to cause significant changes in the FIR

temperature and thus will still be identified using the higher quantile.

With this normalization, we have defined scales of �FIR which we expect

for observations without effects by clouds.

The transformed distributions are

‖AL3‖ =
AL3 − <43(AL3)

=L3

=
AL3 − <43(AL3)√

AL3

(6.4)

for the L3 rate, and

for the FIR temperature. Due to the normalization to the expectations

for good observation,

√
AL3 and @FIR, 0.95, the changes in the normalized

parameters can be investigated simultaneously. We interpolate the nor-

malized FIR temperature to the same frequency of 1 Hz as the L3 values.

We then investigate the 2-dimensional space of ‖AL3‖ , ‖)FIR‖ for influ-
ences of clouds. The new samples are displayed by the grey points in
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Figure 6.5a. During periods with good observing conditions, we expect a
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(a) The grey points show the normalized samples in the ‖AL3‖,
‖)FIR‖ phase space. They are superimposed to the density estimate

with the KDE. The most dense point in this plot is highlighted by

the blue point.
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(b) The blue shaded area is the circle with radius 5 around the

most dense point. All orange samples are outside of this circle

and thus considered outliers.

Figure 6.5: Detection of outliers in the normalized phase space of L3 rate and FIR temperature.

stable L3 rate and FIR temperature. On the other hand, clouds cause large

variations in both metrics. As a consequence, the good periods cause

a dense point in the ‖AL3‖ , ‖)FIR‖ phase space. With the large spread,

the cloudy periods have more spaced points and thus a lower density.

We want to detect outliers from this good, dense point as candidates for

the influence of clouds. A Kernel density estimate (KDE) is applied to

determine the densest point in the phase space. [132] The selection of

bandwidth ℎ can significantly impact the results. As a rule of thumb we

use the Scott’s rule [133] which sets the bandwidth to

ℎ = =−1/3+4

Cov(‖AL3‖ , ‖)FIR‖), (6.5)

with the number of data points =, the number of dimensions 3 = 2, and

the covariance matrix Cov(‖AL3‖ , ‖)FIR‖). The colored map in Figure 6.5a

shows the result density estimate with the KDE. The blue point close to

(0, 0) is showing the densest point in the data. We consider all periods

within a radius of 5 around the densest point as good time intervals. This

interval corresponds to the blue shaded area in Figure 6.5b. Other data

points are defined as outliers and illustrated in orange. For these, we

add candidate time cuts with a buffer of 30 sec before and after outliers.

These are shown by the orange shaded area in Figure 6.6.

As described above, we expect a simultaneous increase in the FIR tem-

perature and a decrease in the L3 trigger rate for clouds that affect the

performance. To ensure that the previous selection picked up a cloud,

we check if both parameters are affected by testing their correlation. In a

sliding window of 30 sec, Spearman’s rank correlation coefficient AB [134]

is calculated. It is a metric for the correlation of )FIR and AL3 within these

intervals. We expect the most significant anti-correlation during periods

that are affected by clouds. However, especially the L3 rate has a large

noise and thus identifying clouds directly from AB is difficult. We modify

the correlation coefficient to

AB,mod = ABabs((‖AL3‖)abs((‖)FIR‖). (6.6)
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This modified metric suppresses the correlations during the regular

intervals as the normalized values are close to 0. Thus, we expect the

most significant excesses during phases affected by clouds. For the

Figure 6.6: Top: Solid line is the L3 dur-

ing the run, and the dashed curve illus-

trates the FIR temperature. The outliers

are highlighted by orange points. The

orange shaded area illustrates the can-

didate time cut to remove the period

affected by clouds. Bottom: Modified cor-

relation of the L3 rate and the FIR temper-

ature. The vertical dashed lines display

the detected spikes. As these are within

the candidate time cut, we can confirm

clouds as the origin of these changes.
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example run above, AB,mod is given in the lower graph of Figure 6.6. We

apply a peak finding algorithm in the AB,mod time series to identify points

with a relevant correlation. We use find_peaks implemented in SciPy

version 1.8.0 [135]. For this application we set the minimum prominence

of the peaks to 3 and the minimum height 5. With these parameters only

significant, individual peaks are identified. The found peaks correspond

to the vertical dashed lines in that graph. For each candidate of a cloudy

period, we require that at least one of the peaks falls within it. Otherwise,

either the trigger rate or the FIR temperature is not affected. In this case,

we can not confirm clouds as the reason for the outliers. In this case, we

remove this time cut from the candidates. Later on, these are reevaluated

to decide if they have overall good conditions or if they should be

removed. This final validation is described in subsection 6.3.4.

6.3.3 Changes of NSB

The VERITAS standard analysis package EventDisplay uses variable

image cleaning thresholds to deal with different night-sky background

levels during observations. However, the brighter the background, the

higher the cleaning thresholds are, and the energy threshold of the

instrument raises. Particularly Moon rises or falls can cause a rapid

change in the NSB level and thus affect the low-energy performance

within a run. Occasionally, also observations are affected by a ending

sunset or beginning sunrise. An increase or decrease in the L3 trigger rate

can indicate these. It is also possible that an observing run is affected only

partly by this effect. In principle, the deep learning transient detection

method could also perform well for these cases. It is possible to control

these trends during the analysis with the correct parameters. However,

implementing the required changes and validating the performance for

these particular cases is beyond the scope of this work. Thus these should

be removed for this analysis.

If a run is affected in total, it is easy to identify it because of a constantly

rising or falling trigger rate. These runs are identified by the final

validation described in subsection 6.3.4. However, we include stable

periods in the analysis if runs are only partly affected. We implement a

diagnostic to detect the changes in the slope of the L3 rate for these cases.
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We fit the L3 rate with a linear function

A1,L3(2, <) = 2 + < ∗ Cr (6.7)

that has ?1 = 2 free parameters and a piece-wise linear function

A2,L3(2, <1 , <2 , Cbreak) =
{
2 + <1 ∗ Cr , Cr < Cb

(2 + <1 ∗ Cb) + <2 ∗ (Cr − Cb) , Cr ≥ Cb
(6.8)

that has ?2 = 4 free parameters. Cr is the time relative to the beginning of

the run in minutes and Cb is the time of the break.
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Figure 6.7: Example of the L3 rate due to

a Moonset. As the NSB level decreases,

the L3 rate does as well. The solid black

line, which is the piece-wise linear fit,

describes the curve significantly better

than the linear fit. Thus, we exclude the

steeper part of this fit with a time cut.

These two fits are illustrated by the solid and dashed black lines in

Figure 6.7. With its flexible break-point, the piece-wise linear fit can

improve describe the L3 rate better if the observations contains a point in

time at which the slope has changed. If a bright Moonrise appears during

the observation, such a break is expected. As the linear fit is a nested

model of the piece-wise linear fit, the F-test can be used to compare

the null hypothesis �0 : �2

2
= �2

1
against the alternative hypothesis

�1 : �2

2
< �2

1
[136]. The F statistic is given by

� =
RSS1 − RSS2

RSS2

= − ?1

?2 − ?1

, (6.9)

where RSS1 and RSS2 are the residual sum of squares of the two models

A1,L3 and A2,L3 and = is the number of data-points for the fit. For the null-

hypothesis the test statistic follows the F-distribution with ?2 − ?1 and

=−?2 degrees of freedom. If thepiece-wise linear fit is preferred,we expect

a �-value considerably above 1, and we can reject the null hypothesis. We

set the threshold for this to 5�. After a significant detection of a break-

point, the part with the higher slope is considered the period affected by

a rising NSB level and removed from the dataset. The other period is a

candidate for good data quality but can still include a significant slope in

the L3 rate. Thus, this is checked as well in the final validation.

6.3.4 Final Quality Evaluation

Above we developed the diagnostics to identify typical influences to the

data quality. The remaining periods of the observing runs are candidates

for observations with good data quality. However, in the large dataset
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the effects can occur with many different appearances. Furthermore, it

is possible that further events appear which are not accounted before.

These are especially hardware issues such as the loss of data during the

readout. Thus, we reevaluate all candidate periods. In contrast to the

previous diagnostics, the goal is a general assessment of the periods. It is

supposed to identify deviation from the expected, stable performance.

First, we remove periods shorter than 5minutes from the candidates. For

all other periods, we test if the slope of the L3 rate is roughly constant. A

linear function

5 (Cr) = 2 + < ∗ Cr , (6.10)

where < is the slope and 2 is a constant factor, is fitted to the L3 rate.

We include a tolerance to control how much slope is still acceptable. It

depends on the run duration and the expected standard deviation for a

stochastic process and is given by

<acc =

√
AL3

ΔC
, (6.11)

where ΔC = Cmax − Cmin is the total duration of the run. Cmax and Cmin are

the end and start times of the period, respectively. For nominal runs

the duration is ΔC ∼ 20 min and the rate is AL3 ∼ 400 Hz. This yields

an accepted slope of <acc ∼ 1 Hz/min. We perform a likelihood test

to determine the agreement of < to the closest value in this interval.

With the assumption of a stochastic process, the L3 rate has a normally

distributed noise. We define a linear curve

5ref(Cr) = 2ref + <ref ∗ Cr = 2ref +


−<accCr , < < −<acc

<Cr , − <acc < < < <acc

<accCr , < > <acc

(6.12)

as reference, where 2ref is optimized to give the optimal fit to the dis-

tribution for the fixed slope. If < is within the interval, the reference

curve 5ref is identical with the optimal fit 5 . We can test the hypothesis

�0 : |< | ≤ |<acc | against �1 : |< | > |<acc | by writing the log-likelihood

ratio as

−2 logΛ =
1

�2

(
=∑
8=1

(AL3,8 − 5 (Cr,8))2 −
=∑
8=1

(AL3,8 − 5ref(Cr,8))2
)
, (6.13)

where AL3,8 are the measured data points of the L3 rate at the times Cr,8 ,

and 5ref(Cr,8) and 5 (Cr,8) are the linear curves evaluated at the same points

in time. With the 1 Hz sampling of the L3 rate, there are at least 300 data

points for each tested period. Thus it is valid to apply Wilks’ theorem,

meaning that the test statistic of −2 logΛ follows the "2
-distribution with

1 degree of freedom. After evaluating the "2
-distribution to calculate the

?-value, we use the normal distribution to calculate the significance at

which we can reject �0. We remove any period with a significance above

5� from the good periods.
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6.3.5 Selection Summary

The diagnostic above makes it possible to assess the data quality of

runs and select periods in which the data quality is stable. First we

select all observation taken either in mode on, off, or wobble. These modes

corresponding to a fixed position in the ICRS frame and are suited for this

analysis. In this thesis we only use observation field without a significant

contribution from the galactic plane. We discuss more details on this

selection in below in subsection 9.1.2. Further, we select all processed runs

with sec(�I) < 1.4, where �I is the mean zenith angle of the pointing

position during a run. This corresponds to amean elevation of  > 44.41
◦
.

It selects themajority of observations that also provide the best sensitivity

and reduces the total parameter range. All other runs are completely

removed. We only consider data for which all four VERITAS telescopes

are marked as good telescopes. Also, only runs in which at least 600 s

left as good data after the automatic DQM are kept. Further selection

criteria are according to preselection summarized in Table 6.2. Table 6.3

summarizes the selection of the total runs for the cuts common to all run

phases.

Common selection criteria
condition #runs

total candidate runs 16773

Mode on, off, wobble 16181

galactic False 16429

Status good_run 11770

DB time-cuts none 13496

UsableDuration > 600 s 14941

good telescopes [1, 2, 3, 4] 15538

sec(�I) < 1.4 16198

Table 6.3: Common selection criteria for

all run phases. The number of runs#runs

illustrate all runs that survive each indi-

vidual cut. A summary of runs that pass

all criteria is listed in Table 6.5.

As discussed in page 44, we use different preselection for the training

and calibration phase compared to the inference phase. The overview of

the run selection criteria with these different conditions are summarized

in Table 6.4.

Different selection criteria
train, calib inference

condition #runs condition #runs

Weather A 11139 A, B 14779

observer comments none 13189 —

DQM comments none 11359 —

Table 6.4: Different selection criteria for

the run phases. Equivalent to Table 6.3

for the criteria in which different cuts

are applied for the training, calibration

and the inference run phase. A summary

of runs that pass all criteria is listed in

Table 6.5.

The total selection of runs is given by these that pass all the cuts listed

in Table 6.3 and Table 6.4. Table 6.5 shows an overview of the total

result of the data selection. Runs excluded entirely or to large parts are

removed from these run lists by requiring 10 usable minutes during the

preselection. We note that even in the selected training and calibration

dataset, which uses a conservative preselection, time cuts were set for

300 runs to exclude problematic periods in the data quality. It proves the

importance of the automatic data quality assessment developed in this

thesis. The upper graph of Figure 6.8 shows the standard deviation L3

rate �L3 for all periods selected for training, and the bottom graph is the
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Table 6.5: Overview of data selection for

the training, calibration and prediction

phase of the analysis.

train, calib inference

runs after preselection 5725 9496

total duration 2597.2 h 4287.9 h

duration after time cuts 2567.0 h 4222.6 h

same for the prediction dataset. Runs entirely removed from the run lists

are not displayed. For the runs that have parts of it excluded by a time

cut, we also calculate �L3 only in the periods selected for the analysis.

The orange arrows indicate the differences of using the full runs to the

good periods only. We note that a couple of runs in each dataset have

larger �L3 > 30 Hz even after the time cuts. These are checked manually

and validated that no systematic effect was missed.
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Figure 6.8: Standard deviation of the L3 rate �L3 for the training and prediction datasets. The blue points only include the periods which

are not removed by the automatic time cuts. If time cuts are set, the change in �L3 due to these are illustrated by the orange arrows.

These distributions prove the advantage of the automatic data quality

assessment developed above. For the prediction dataset, the preselection

was loosened which increased the total duration by 65%. This also

increases the risk of including periods with unstable data conditions.

However, the automatic DQM using is able to identify these intervals

and exclude them efficiently. With less complex data selection feasible

on large run lists, a significant fraction of these runs would have been

excluded entirely from the analysis. Furthermore, these runs are selected

consistently and thus don’t include selection biases.

All relevant entries associated with the data quality of the runs as well

are saved in a hdf5 file. One one hand these are the basic results of the

DB query such the start and end times of the observations and the entries

in listed Table 6.2. On the other hand also the results of the automatic

DQM are stored, especially the time cuts as well as the reasons for it. We

also store locally the time-series data from the DB such as the L3 rate, FIR

temperature, elevation and azimuth. These are later reused in Chapter 8

for the data preparation.
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6.3.6 Validation

The selection described in subsection 6.3.5 makes use of the diagnostics

described above. Especially the automatic selection of time cuts is novel

in this approach. In Figure 6.8 we showed that effects on the L3 trigger

rate are identified and successfully removed. As discussed before, we use

the L3 rate as an independent proxy of the data quality. A focus on the

runs for which parts are excluded is given in Figure 6.9. We only display

runs with timecuts and show the �L3 before and after timecuts by the

gray squares and blue circles, respectively. All periods that cause a large

�L3 are removed.
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Figure 6.9: Standard deviation of the L3

rate �L3 for the training and prediction

datasets. Here only runs with timecuts

are illustrated. The grey squares shows

the raw �L3 of the complete runs and the

blue circle after excluding periods by the

time cuts.

The fundamental objective of the data assessment is to identify and

remove periods in which the rate of �-like events A� are reduced by

the bad data quality. We use the reconstructed event rate Areco as a

representative for A�. It is the rate of reconstructed events before the

background suppression. Thus it is dominated by hadronic events. Both

depend on the same observational conditions. However, Areco has the

advantage of a significantly larger statistic which makes it easy to study.

We use it to investigate the performance of the time cuts.
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Figure 6.10: Rate of reconstructed events as a function of the L3 rate. The blue data points are samples that are included in the analysis.

The orange points in the left graph are excluded due to a detected Moonrise. In the middle and right time cuts were specified to remove

cloudy periods.

In Figure 6.10 we show three examples for the distribution of Areco and

AL3 with a 1 second sampling for individual runs. The blue points are

samples that are included in the analysis, and the orange points lie within

the determined time cuts. In these examples, the automatic DQM was
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able to identify the periods that have varying Areco. The changes in the

plot left are due to a detected Moonrise and the other both show effects

due to clouds. Compared to the clouds, the effect of the Moonrise on

the reconstructed rate is less significant. The standard reconstruction is

rather robust against changes in the NSB level. As the rates still tend to

be a bit lower, we exclude the detected Moonrises nonetheless.

In the next step, we select all runs from the prediction dataset for

which the automatic DQM sets a time cut. This results in a list of 700

runs. We calculate the rate of Areco,20 with 20 second sampling. This

corresponds to the time binning used later in this analysis (see Chapter

8). A high standard deviation of these samples within the run is a sign

of uncontrolled influences in the data. Thus we calculate the standard

deviation �reco,20 of these samples. Figure 6.11 shows the distribution for

the selected runs. Due to the automatic time cuts, periods with significant

deviations from the stable conditions are excluded for the blue histogram.

Thus, the majority of runs have a lower �reco,20 which indicates stable

observing conditions.

Figure 6.11: Standard deviation of the

reconstructedd event rate in 20 seconds

binning �reco,20 for the 700 runs with

time-cuts. The grey distribution includes

all periods in these runs, and the blue

considers only periods with good data

quality. With the time cuts, periods with

unstable conditions are removed, and

thus �reco,20 is lower.

2 4 6 8 10 12 14 16 18
reco, 20

100

101

102

Nu
m

be
r o

f r
un

s

all periods
with timecuts



[27]: Ukwatta et al. (2016), ‘Primordial

Black Holes: Observational characteris-

tics of the final evaporation’

1: The expected maximum detectable

distance 3max is about O(pc) for VERI-
TAS. For nearby PBHs, 3 � 1 pc, both

photonsmight be detectable,making this

a conservative assumption. However, the

expected �-ray signals in these cases are

very strong and typically well detectable

in any case.

[27]: Ukwatta et al. (2016), ‘Primordial

Black Holes: Observational characteris-

tics of the final evaporation’

[137]: Bellm et al. (2013), ‘Herwig++ 2.7

Release Note’

[27]: Ukwatta et al. (2016), ‘Primordial

Black Holes: Observational characteris-

tics of the final evaporation’

Simulation of PBH Evaporation
Signals 7

7.1 �-ray Signals from Evapo-
rating PBHs . . . . . . . . . . 57

7.2 Simulation of Evaporation
Signals . . . . . . . . . . . . . 58

In previous chapters we discussed the concepts of the novel deep-

learning based transient detection. In this thesis, we implement this

method to search for evaporating primordial black holes with VERITAS.

The Hawking radiation which constitutes this burst was reviewed in

section 2.2. In section 7.1 we introduce a description of the expected

�-ray signals of these events. Using this parametrization, we simulate the

time-dependent signals using the package gammapy. This is covered in

section 7.2. These signals are superimposed onto a background dataset

generated from observations as part of the data preparation described

in Chapter 8. Thus, background events are not included into these

simulations.

7.1 �-ray Signals from Evaporating PBHs

In section 2.2 we introduced the production mechanisms of �-rays by
PBHs. We base our simulations on the theoretical work and parametriza-

tion derived in [27]. The most important process is the fragmentation and

hadronization of quarks or gluons. The �-ray production is dominated

by the decay �0 → 2�. Due to the Lorentz boost, the angles between the

�-rays is very small. Nonetheless, over the distance of O(pc), the split

between the photons is too large to be detected by the same detector.

This justifies the assumption that only one of the photons could be

detected.
1
In this thesis, we use the pion fragmentation model assuming

that the total fragmentation can be approximated by the production of

pions. Using this assumption, a reasonable parametrization for the �-ray
contribution at energies �� & 1 GeV was derived as a function of the

dimensionless parameter

G� =
��

:B)BH(�)
≈ 1.287 × 10

−4

(
��

1 GeV

) ( �
1 s

)
1/3
, (7.1)

where � is the remaining lifetime of the BH, :B is the Boltzman constant

and )BH is the BH temperature. The fragmentation contribution to the

instantaneous spectrum is described by the empirical function [27](
d

2#�

d��dC

)
frag.

= �G
−3/2
� [1 − Θ((G� − 0.3)]

+ � exp(−G�)[G�(G� + 1)]−1Θ((G� − 0.3) (7.2)

where � = 6.339 × 10
23

GeV
−1

s
−1
, � = 1.1367 × 10

24
GeV

−1

s
−1
, and the

function Θ((G) = 0.5(1 + tanh(10G)).
A Monte Carlo (MC) simulation of the fragmentation can be performed

with the Herwig event generator [137]. Compared to the MC simulation,

the parametrization is accurate to ±15% in the range of G� between 0.1

and 10 At smaller and larger G� the precision is ±3%.

The direct Hawking emission is parametrized by [27]
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Figure 7.1: Instantaneous emission of �-
rays during the final 100 s of the BH

evaporation. The colors note distinct

values of the remaining lifetime � ∈
{100, 10, 1, 0.1, 0.01} s. The total spectra

(solid lines) are composed by contribu-

tions of the pion fragmentation (dashed

lines) and direct Hawking emission of

�-rays (dotted lines).
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[41]: Linton et al. (2006), ‘A new search

for primordial black hole evaporations

using the Whipple gamma-ray telescope’

[138]: Deil et al. (2017), ‘Gammapy - A

prototype for the CTA science tools’

(
d

2#�

d��dC

)
direct

=
1.13 × 10

19
GeV

−1

s
−1G6

�

exp(G�) − 1

�(G�), (7.3)

where � is

�(G�) =


1.0 , G� ≤ 2

exp{[−0.0962 − 1.982(ln G� − 1.908)]
× [1 + tanh(20(ln G� − 1.908))]}

, G� > 2 .

Instead of this parametrization, many works also use the description

introduced in [41]. It is derived by averaging the energy of the peak quark

flux over the last � seconds of the BH life time& ≈ 4×10
4(�/1 s)−1/3

GeV.

It inaccurately describes the behavior of the spectrum at �� slightly

smaller than &. Also the exponential fall off at the highest energies is

overestimated. Equation 7.3 provides a more suited description of the

direct �-ray emission.

Finally, also the decay of fundamental particles produces �-rays. This
component is small compared to the production via direct emission and

pion fragmentation. Thus, it is neglected in this consideration. The total

�-ray spectrum at time � is described by(
d

2#�

d��dC

)
emission

=

(
d

2#�

d��dC

)
frag.

+
(

d
2#�

d��dC

)
direct

. (7.4)

We show the instantaneous emitted spectrum for five different remaining

lifetimes � between 100 s and 0.01 s in Figure 7.1. The dashed and dotted

lines show emission from fragmentation and direct emission, respec-

tively. As � approaches the final evaporation, the contribution of directly

Hawking-emitted �-rays shifts to higher energies, and the emission from

the pion decay is scaled up.

7.2 Simulation of Evaporation Signals

This thesis aims to constrain the rate of PBH evaporations. A critical

parameter for this work is the detection efficiency of the bursts. We

derive this by applying the deep-learning-based transient detection to

simulated signals. For this work, we use gammapy [138] in version v0.20.1.
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Figure 7.2: Emitted light curve of �-
rays in the energy range of 0.1 TeV and

100 TeV during the final 100 s of the BH

evaporation. The smaller subplot inside

focuses on the last 10 s and uses a log-

arithmic y-scale. The blue and orange

shaded colors illustrate the time-binning

used for the simulations.

[27]: Ukwatta et al. (2016), ‘Primordial

Black Holes: Observational characteris-

tics of the final evaporation’

We simulate the last 100 s of the BH evaporation corresponding to the

most significant expected excess of events. Figure 7.2 shows the integrated

light curve in the energy range of 0.1 TeV and 100 TeV. The main plot

shows the full simulated time, and the smaller sub-graph shows more

details during the last 10 s. As the BH is closer to the end of the lifetime,

�→ 0 s, the emission approaches infinity,

(
d#� /dC

)
emission

→∞.

As shown in Figure 7.1, not only the normalization changes in this process

but also the spectral shape. Currently, it is not possible to directly simulate

events coming from such changing spectra in gammapy. Thus, we separate

the total time interval in seven shorter bins. The eight edges [�0 , . . . , �7]
are [−100,−60,−20,−10,−5,−2,−1,−10

35] s. They are illustrated by the

blue and orange shaded regions in Figure 7.2. The shorter intervals closer

to the final burst reflect the fast changing spectrum at this time. The last

value −10
35

s is selected for numerical reasons to avoid a flux of∞. For

the calculation of the average spectrum, any sufficiently small final value

(�7 . 10
−20

) yields stable results.

For the simulations, we calculate the average spectra within each of the

seven time bins. The average �-ray spectrum in the time interval �8 and
�8+1 (�8 < �8+1) until the final evaporation is[

d
2#�

d��dC

]�8+1

�8

=

∫ �8+1

�8

d
2#�

d��dC
dC. (7.5)

The average spectra in the seven time bins are shown in Figure 7.3. The

shape of the average spectrum during final 1 s significantly differs from

the other spectra. Especially, it roughly follows a broken power law with

a break around �break ≈ 10 TeV. For �� < �break, the spectrum has an

power law index of −1.5. The reason for this is the dominant fragmen-

tation contribution at �� . :)BH. At higher energies, �� > �break, the

direct Hawking-emitted �-rays dominate. The index of −3 in this range

comes from the fact that � ∝ )−3

BH
[27].

Above spectra describe the emitted photons. Ultimately, we are interested

in photons that might be detectable. The Hawking radiation is homoge-

neous over the full solid angle. This leads to a scaling factor incorporating

the distance of the BH to the observer 3

d
2#�

d��dC
=

1

4�32

(
d

2#�

d��dC

)
emission

. (7.6)
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Figure 7.3: Average simulated emission

of �-rays calculated using Equation 7.5.

The colors denote average time �8 = (�8+
�8+1
)/2within each time bin. The average

spectral shape of the last time bin differs

significantly from the previous spectra.

At �� & 10 TeV, it is dominated by the

direct Hawking-emitted photons where

the index represents the fact that � ∝
)−3

BH
.
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The BH distance 3 is the only source-dependent parameter in the de-

tectable spectrum.

For the simulations also the detector response is crucial and has to be

included. It is described by the effective area �(�� , Θ̂), where Θ̂ are all

observational parameters which influence the instrument performance.

For VERITAS this includes the pointing elevation and azimuth, NSB level,

the offset angle �, observation season, and instrument configuration. � is

defined by the position of the source relative to the pointing position of

the instrument.

We load the full enclosure IRFs corresponding to a selected run from

the DL3 files. We introduced these above in section 6.2. In section 5.3,

we introduced the concept of meta bins grouping the runs by the most

important differences. As discussed below in subsection 9.3.2, the number

of relevant meta bins in this work is 24. By randomly selecting 10 runs

from each meta bin, we ensure that all observing conditions are covered

by the simulations. If not enough runs are available in one meta bin, we

use the maximum available. The minimum number of runs in a single

meta bin is eight.

Table 7.1: Summary of simulated PBH

parameters.
Parameter N Values

� 7 edges: −[100, 60, 20, 10, 5, 2, 1, 10
−35] s

3 25 logarithmically between 0.15 pc and 2.5 pc

� 11 linearly between 0
◦
and 2

◦

For all selected runs, we run the simulations with varying source param-

eters. We use 25 distances 3 logarithmically spaced between 0.15 pc and

2.5 pc. Further, we use eleven offset angles � linearly distributed between

0
◦
and 2

◦
. These parameters are summarized in Table 7.1. As part of

the data preparation described in Chapter 8, the seven time bins are

merged to one 100 s single evaporation event. This leaves a total of 275

combinations of the source parameters 3 and � that are simulated. For

each combination and sampled observing run, 20 simulated evaporations

are produced. For most meta bins, this yields a total of 200 simulated

events per parameter combination. In total, ∼ 1.3 × 10
6
BH evaporation

bursts are simulated covering the full parameter space.
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This work is the first application of this novel deep-learning-based tran-

sient detection for actual observational IACT data. As it is not a standard

analysis method, we need to develop a pipeline to prepare the VERITAS

data for this method. Previously we developed a pipeline to assess the

data quality and determine intervals suited for this analysis. We follow

the approaches we introduced in section 5.3 for this analysis. This chapter

discusses how we implement these strategies to prepare VERITAS data

into trans_finder.

The data preparation is crucial for the performance of the transient

detection method. Its purpose is to read the selected VERITAS data and

generate the inputs for the RNN. The main features of the input data

are the counts of �-like events divided into ROIs, energy bins, and time

bins. Figure 8.1 shows a schematic illustration of the data preparation

pipeline. It provides an interface for the results of the automatic DQM

with vts_datacheck. We read them from the hdf5 files and perform a

preselection of the observation. Details of this procedure are described in

subsection 6.3.5. The DQM results also contain the periods ? with stable

observing conditions identified by the DQM. We search for transient

signals within these intervals.

Name Unit Description

TIME s arrival time

ENERGY TeV reconstructed energy

IS_GAMMA boolean value indicating if event is �-like

BDT_SCORE
Score used in �-hadron separation.

Values closer to one indicate �-like events

EVENT_TYPE Number of images for this event (multiplicity)
RA deg

reconstructed origin in ICRS

DEC deg

ALT deg

reconstructed origin in horizontal system

AZ deg

Xoff deg

reconstructed origin relative to center of FoV

Yoff deg

Table 8.1: Columns of the event-list

stored in the DL3 files.

The data preparation is built on the VERITAS standard event reconstruc-

tion performedwith EventDisplay.We read the list of reconstructed �-like
events from the DL3 files. Table 8.1 summarizes the information stored

in these files. Primarily these are the time of arrivals, the reconstructed

energy, and the reconstructed origin in the International Celestial Reference
System (ICRS) [139] for all events. They also store metadata, such as the

score used for the �-hadron separation and whether it is a �-like event.
The EVENT_TYPE refers to the number of telescopes that have recorded

an image of the events. In the following, we refer to this parameter as the

multiplicity of the events.
Furthermore, the time series data stored by vts_datacheck is also loaded.

These are the elevation, azimuth, and L3 rates during the investigated

periods. We assign the observational information to each event using

linear interpolation in time.
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Figure 8.1: Schematic illustration of the data preparation pipeline. It generates the data required for this transient detection method. The

data selection module provides an interface to apply the automatic time-cuts discussed in the previous chapter. The reconstructed �-like
event lists are read from the DL3 files. First, the events of each period p are binned in energy, time, and ROIs, which yields the time series

to analyze Sp. We apply padding with background data at the beginning and end for each ROI and energy bin. For the training and

calibration phases, the method requires a background dataset. We implement a shuffling algorithm that removes the contamination of

possible transient signals from the data. Furthermore, we apply an oversampling of the events. It adds each event multiple times and

varies its position and energy according to the expected uncertainty. This new list of events is rebinned to generate the series Sp∗. Finally,
using a sliding window approach, we extract the time series to be passed to the RNN SRNN.

First, we calculate the time series S? which covers the full length of one

observing period. Each time step has a duration of )step = 20 s. The total

number of steps depends on the duration of the observation. We assign

the counts of �-like events passing the �-hadron selection to each time

bin. These time series are calculated for three energy bins and 37 regions

of interest filling the FoV. The ROIs are introduced in section 8.1 and time

and energy bins are defined in section 8.2.

The required input to the RNN are time series SRNN of length �RNN =

�enc + �dec, where �enc and �dec are the steps of the encoder and decoder,

respectively. In this analysis we use �enc = 20 and �dec = 5 which results

in a total length of the time series �RNN = 25. Only the decoder steps

are tested for transient signals. In order to probe the full series Sp for
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transient signals, we implement a sliding window approach. It moves

SRNN through the period. By padding the beginning and end of the

periods with background data, we generate the auxiliary sereis Sp∗. With

the combination of padding and sliding window, the transient signals

can be searched within the full seriesSp. We expand on these approaches

in section 8.3.

The training and calibration phases require background datasets. The

actual data could include transient signals and thus is not directly suited.

We use a shuffling algorithm to smear out these contaminations. In sec-

tion 8.4 we describe its implementation into the data preparation pipeline.

Further, we implement an oversampling that creates an event cloud for

each �-like event. It involves the uncertainties of the direction and energy

reconstruction. The oversampling that we discuss in section 8.5, helps

to deal with the gaps between the ROIs. The data preparation pipeline

changes event features (i.e., during shuffling) and artificially adds new

events (i.e., during padding and oversampling). We rebin the updated

event list using the same binning approach as before. This yields a new

series that can be prepared with the sliding window.

8.1 Region of Interests

The ROIs are circular fields in the FoV with a radius of AROI. The radius

should be large enough to include the majority of the source events.

However, the larger the ROIs are, the higher the background counts.

Thus, it is a trade-off between including a larger part of the signal and

increasing the background. We select AROI such that a significant fraction

of the reconstructed �-rays are within one single ROI in case of perfect

alignment between ROI and transient point source.
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Figure 8.2: Dependency of the PSF on the zenith and offset angles. The azimuth and pedestal variance have secondary effects and thus

are not shown here. On the left, we use a fixed zenith angle of � = 40
◦
and vary the offset angle. In the right plot, the offset is fixed at

1.5◦ and the � is varied. The fixed parameters roughly correspond to the values with the largest expected PSF in this analysis.

Figure 8.2 shows the distributions of the PSF for the most critical pa-

rameters, the zenith and offset angles. VERITAS has the largest PSF

values at high offset angles to the center of the FoV, large zenith angles,

and small energies. The other parameters, such as the azimuth angle

and pedestal variance, have secondary effects on the PSF. This analysis

includes observations with zenith angles � ≤ 44
◦
. The lowest energies

considered are 100 GeV and the most distant ROI is 1.5◦ away from the

center of the FoV. The PSF for observations in this analysis usually is
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≤ 0.25
◦
. Thus, we select AROI = 0.25

◦
.

We define the ROI positions, in a SkyOffsetFrame implemented in

astropy [140, 141]. These are spherical coordinates relative to the ori-

gin. The axes in this frame are the longitude and latitude angles. We

use the instrument’s pointing position as the frame’s origin. Thus, the

SkyOffsetFrame is centered around the middle of the FoV. We position

ROIs in the FoV to have a maximum distance from the origin of 1.5◦. We

start adding ROIs in rows of fixed latitude. Each following row is shifted

by Δlon = AROI and Δlat =
√

3AROI. This way, the ROIs can fill the FoV

without overlap and the least possible gaps. We define a total of 37 ROIs.

Figure 8.3a illustrates their locations relative to the pointing position.
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(a) In total, we define 37 ROIs that cover the inner 1.5◦ of the
camera without overlap. The numbers inside the ROIs are the

unique identifiers of the ROIs.
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(b)We remove ROIs with more than 10% overlap for this analysis.

The numbers in the ROIs show their corresponding overlap with

the exclusion regions.

Figure 8.3: The blue circles show the ROIs in the SkyOffsetFrame relative to the center of the FoV. The red circles indicate the excluded

regions within the FoV due to bright stars and known VHE �-ray sources. We use the fractional overlap as a correction for the remaining

ROIs.

We exclude positions with known VHE �-ray sources and bright stars.

In their presence, the background rate of �-like events diverges from the

customarily expected background rates. The treatment of these specific

cases is beyond the scope of this thesis. We define circular exclusion

regions around stars based on their brightness. 0.25
◦
, 0.3◦ and 0.35

◦

for stars brighter than magnitudes 6, 4, and 2, respectively. We use the

Hipparcos 2 catalog for the star parameters [142].

To identify relevant �-ray sources for VERITAS, we use the VTSCat [143].

It contains a list of sources detected or observed by VERITAS. We exclude

sources with circular regions of a radius of 0.35
◦
. As discussed in Chapter

6, we conservatively select the data for the training and calibration phases.

Thus, we exclude regions around every observed source in the VTSCat. It

prevents contamination by weak sources at these run phases. We slightly

loosen the exclusion for the inference phase by including observed but

not detected sources.

We calculate the overlapping area �ex of each ROI with the excluded

regions. The fraction to the total area�tot that is excluded is (�ex/�tot)ROI.

If (�ex/�tot)ROI > 0.1, the ROI is removed for this observing run. Other-
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wise, we apply a correction for the expected fraction of lost events. For

this correction, a homogeneous distribution of events within each ROI is

assumed. The corrected number of event counts is

=�, corr(ROI) = =�(ROI) 1

1 −
(
�ex

�tot

)
ROI

. (8.1)

We show an example of the exclusion regions in Figure 8.3b. In this

illustration, we remove ROIs excluded from the analysis. The numbers in

each remaining ROI are the fractional overlaps with the excluded areas

(�ex/�tot)ROI. The counts of � rays within all ROIs with (�ex/�tot)ROI >
0.0 are corrected according to Equation 8.1.
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(a) The grey and red circles are the ROIs and exclusion regions

respectively. The blue dots illustrate the origin of each �-like event
within this specific observing run.
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(b) The colors illustrate the total number of events within each

ROI. If an ROI overlaps with an exclusion region, we correct the

number of events using Equation 8.1.

Figure 8.4: Assignment of events to the ROIs. On the left, we show the reconstructed position of the individual �-like events. Based on

the spatial coincidence, they are assigned to the ROIs. We show the number of events for each ROI after the assignment on the right.

In Figure 8.4a we show the reconstructed origins of the recorded �-like
events by the blue dots. They are superimposed on the grey ROIs that

fill the inner 1.5◦ of the FoV. We show the same FoV with exclusion

regions displayed in Figure 8.3b. Events falling into any of the exclusion

regions are removed for this analysis. We assign events to each ROI

based on spatial coincidence with the reconstructed origin. It leads to a

spatial binning of the events. The events falling in one of the gaps are not

associated with any ROI. Consequently, only the events within the ROIs

contribute to the search for transient signals. In order to also include

events falling into the gaps, we implement an oversampling of the events.

We describe this oversampling approach in section 8.5.
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8.2 Time and Energy Bins

To determine the periods that are analyzed, we use the automatic DQM

developed in Chapter 6. All events with a temporal coincidence with

the time cuts are removed from the analysis. The distinct periods ? with

good observing conditions have start times )start, p and end times )end p.

We define a time series Sp for each period that spans the whole duration.

Each time steps of the series has a duration of )step = 20 s. The total

number of steps �p of each series Sp is given by the duration of the

period

�p =

⌈
)end p − )start, p

)step

⌉
. (8.2)

We note that Sp can not be used as input to the RNN directly. It has

a variable length of �p ≠ �RNN steps. We transform it to the input

sequences SRNN utilizing a sliding window approach introduced in

section 8.3. Furthermore, this method is only sensitive to transient signals

within the decoder steps. Directly usingSp, it could only investigate parts

of the total period ?.

We calculate the number of �-like events in each step �8 , where 8 ∈
{1, . . . , ?}. Due to edge effects, the duration )(�p) of the last time bin

�p can be shorter than 20 s. If its duration is less than 90% of )step, we

remove this time bin from the analysis. Otherwise, we correct the event

counts for the fraction of lost time assuming a constant event rate during

the time interval

=�, corr(�p) = =�(�p)
)step

)(�p)
. (8.3)

Including information about the spectrum of the �-like counts can

improve the detection probability of transient signals. We split the

complete list of events into three energy bins. The first energy bin covers

the low end of VERITAS sensitivity range from 100 GeV to 330 GeV. The

middle bin covers events from 330 GeV to 1 TeV. The last bin covers the

highest energy interval of the VERITAS sensitivity. Its range is from 1 TeV

up to 100 TeV.

Figure 8.5 shows an example of the applied time and energy binning.

Displayed is the same observing run shown in Figure 8.4b. The ROI

number 29 we show here has the highest integrated number of events.

The maximum number of events for this example is three counts in one

of the energy and time bins. For this period, the last time bin �p is shorter

than 90% of the time step duration )step. Thus it is removed from the

analysis.

Under the background hypothesis, the expected number of �-like events
> 1 TeV is low. As shown in section 7.1, the emitted �-rays from PBH

evaporations can reach these energies. This low-background bin can

be very powerful for detecting these signals. However, during training

and calibration counts of mostly 0 can be difficult to handle. Thus,

we manually increase the background counts by adding Poisson noise

with � = 2. This is applied during all analysis stages and thus treated

consistently. While it increases the threshold for detection, it also has an

stabilizing effect on the analysis.

The number of expected �-like events in first energy bin, 0.1 < �/TeV <
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Figure 8.5: Series Sp of counts in ROI 29 of Figure 8.4b. All events are binned in energy and time bins as described above. The individual

counts in each bin reach from 0 to a maximum of 3 counts.

1: We study influences to determine aux-

iliary parameters which describe these

differences in section 9.1.

0.33, depend energy threshold. It varies between the runs due to the

observing conditions.
1
Within the data which we consider in this thesis,

it can rise to above 330 GeV. For these runs, no events in the first energy

bin are expected. Thus, we also add Poissonian noise to this energy bin.

This additional noise is added just before passing the series to the RNN. It

is the latest datapreparation stage. Inparticular, it happens after the events

are oversampled. We describe the details of the oversampling approach

in section 8.5. The following graphs do not include this additional noise

terms.

Above, we discussed the definition of the ROIs, energy, and time bins.

We calculate the time series Sp with the counts of �-like events for each
bin. The counts are the main features of the analysis used to calculate

the test statistic. The results from the different ROIs and energy bins

are combined later as part of the calibration pipeline. The calibration is

described in section 9.3.

8.3 Padding and Sliding Window

We perform a blind search for transient signals. Thus, we do not know a

priori at which of the �p steps of the seriesSp we expect a transient signal.

As a consequence, it is impossible to fix the position of the time series

SRNN such that the decoder position coincides with the transient signal.

Instead, it can occur at any time, and the detection method has to scan

through the entire period Sp. We implement a sliding window algorithm

to move SRNN with the �RNN time steps through the initial series Sp. At

each iteration of the sliding window, the time series is moved by one time

step. This way, a potential signal is guaranteed to also ’slide’ through the

decoder phase.

This sliding window approach is illustrated in Figure 8.6. Each horizontal

grey box represents one iteration nslide of the sliding window. The blue

circles represent the time steps of Sp that are investigated. During the

sliding window, each of the �p steps are filled once into each of the

�dec decoder steps. The green rectangles represent the decoder. Each

time step of Sp is filled �dec times into different positions in the decoder
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Figure 8.6: Illustration of the sliding window and padding. The blue circles represent the �? time steps of the investigated series Sp. The

grey boxes in the background illustrate the different iterations n
slide

of the sliding window. The sliding window extracts parts of the time

series to fill the time series SRNN. They consist of the encoder and decoder steps. The method only searches for transient signals in the

decoder steps. Thus, we deploy a sliding window approach that fills each step of Sp into all decoder steps. We need padding data to scan

through the period’s beginning and end. The red circles illustrate these. The padded time series Sp∗ are longer than the initial series by a

total of �enc + 2�
dec
− 2 time steps. During the first iteration, the first time step �0 is filled into the last decoder step, and the padding

steps fill the rest. At each iteration n
slide

, the sliding window is moved by one time step. In total �p + �dec
− 1 iterations are performed. In

the final realization, the last step �p is filled into the first decoder step.

2: Nonetheless, we need to correct for

other trial factors in this analysis. See

more details on their treatment during

calibration in section 9.3.

phase. Thus, each time step is tested multiple times for a transient signal,

increasing the trial factors. The slidingwindow is also applied to generate

the background data for the calibration phase. Thus, the background

test statistic distribution also includes the statistical fluctuations multiple

times. This way, these trial factors are automatically corrected by the

basic calibration approach of this analysis.
2

To search for transient signals within the full range of Sp, we need to

ensure that each step is filled to the decoder. We generate a new time

series Sp∗ with additional padding steps at the beginning and end of

the period. In Figure 8.6, Sp∗ is the joint of blue and red circles. The red

circles represent the padding time steps added to Sp. This padding data

corresponds to background counts under identical observing conditions.

Their primary use is to fill the missing steps of SRNN. The padding at the

beginning fills the encoder during the first iterations of nslide. It allows

starting the transient search at the beginning of the investigated period

Sp. The padding at the end allows continuing the sliding window until

the last time step of Sp.

For the padding, we randomly select events from the periodSp. With this

approach, the padding data follows the same energy spectrum as the
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initial data. The period potentially can include transient signals which

could conflict with the background hypothesis. Thus, to generate the

padding data, we scramble the timestamps of all events within the period.

In this thesis, we search for PBHs, for which the expected signals are

in the duration of few seconds. The minimum allowed duration of the

period is 5 min. Thus, these potential signals is smeared out during the

shuffling. After the shuffling, we group the event into time bins of length

)step and append these to the Sp.

We add �enc + �dec − 1 time steps at the beginning of each time period.

For the first iteration nslide = 1 of the sliding window, the first time step

of Sp coincidences with the last decoder step. All other �enc + �dec − 1

steps of SRNN are filled with the padding steps. During further iterations,

SRNN covers different parts of the series. In the last sliding window, the

last step of Sp is filled into the first decoder step. Thus, we pad the time

series with �dec − 1 time steps at the end. The padded series Sp∗ has more

steps than the initial series Sp

�p∗ = �p + �enc + 2�dec − 2. (8.4)
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Figure 8.7: An example of the padded

seriesSp∗ in the three energy bins within

one ROI. From bottom to top, the energy

bin increases. The blue graphs illustrate

the period with recorded events. The

transient signals are searched within all

of this period. The orange time steps are

added as padding data. With this, the

decoder steps of sliding window series

SRNN covers all recorded time steps.

We show examples of the padded series Sp∗ in Figure 8.7. Illustrated are

the number of event counts in the three energy bins for one selected ROI.

The blue curves show the recorded time steps, and the orange highlights

the padding data. The event counts during the padding steps follow a

Poisson distribution with the mean rate � of Sp

�(�) = 1

�p

�period∑
==1

#�,=(�), (8.5)

where #�(�) are the counts of �-like events for each energy bin �. We

have selected the data such that the intra-run change of the rate of �-like
are expected to be modest. Thus, ignoring possible transient signals, the

counts in Sp follow roughly the same distributions.
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8.4 Shuffling

As mentioned in section 5.3, the training and calibration run phases

require a dataset without transient signals. In this work, we use actual

observational data for these phases. It enables the input data generation

without modeling the instrument response function. This approach does

not have the risk of a data-simulation mismatch. However, the real data

can contain transient signals, which contaminate the training data. A

transient signal causes a temporal increase in the rate of detected �-like
events. Scrambling the timestamps of the events can flatten out these

signals. We use this concept to generate the background dataset.

The background rates are also affected by numerous effects, which can

change the expected rates on O(min). The shuffling approach needs to

maintain these temporal features. Otherwise, it would create a mismatch

between the shuffled and unshuflled data. Particularly, the calibration

phase would be affected by differences in the distributions.

We use an approach similar to the sliding window to keep the time-

dependent features throughout the shuffling. We define a shuffling

interval covering �shuffle time steps. In this thesis, we set �shuffle = 3�dec =

15. This corresponds to awindow duration of 300 s. For the science case of

PBHs, the most significant signal is expected only in the last few seconds

to the final burst. We investigate the efficiency of removing transient

signals in Figure 8.8.

The shuffling window is sliding through the padded series Sp∗. For each
iteration 8 ∈ {0, . . . , �p∗}, we select the events within the time steps

�8 and �8 + �shuffle. We shuffle the timestamps for these events using a

uniform distribution within the shuffle interval. A rebinning in time

assigns them to their new time steps. The counts in this auxiliary time

series Sshuffle,8 follow a Poisson distribution with the mean rate �8 of the
shuffle interval.

�8 =
1

�shuffle

�8+�shuffle∑
n=�8

#�,n , (8.6)

where #�,n are the number of counts at time step n. We randomly select

one of the time steps of Sshuffle. The events of this interval are chosen as

the new events of time step �8 .
The shuffling of each time step 8 we require a total of �shuffle steps. To be

able to shuffle all timesteps, an additional �shuffle − 1 padding steps are

required. These are temporarely added to Sp∗. After shuffling, the initial

length of Sp∗ is restored.
The window size �shuffle defines how effectively transient signals are

removed from the input data. The larger the window, themore a potential

transient signal is smeared. However, also more of the background-

specific features are removed. Thus, the window should be selected as

small as possible to remove a significant contribution of the transient

signal. For PBHs, the bulk of the evaporation signal is expected within a

few seconds. Having a 300 s long shuffle window, is able to smear these

short signals. Further, the O(min) changes of the background rates are

largely unfazed.

In Figure 8.8, we investigate the efficiency of the shuffle algorithm in

removing transient signals. We perform a toy simulation assuming

constant Poisson distributions for the background and signal counts
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Figure 8.8: The efficiency of the shuf-

fling algorithm for toy simulation. We

simulate constant Poisson distributions

for the background and the source with

different signal durations and strengths.

The colors give the relative increase of

the shuffled counts to the background

counts �
S,8/�bg

.

with means �sig and �bg, respectively. The x-axis shows the strength of

the transient signal relative to the background �sig/�bg. We also alter

the duration of the signal Tsig relative to the duration of the shuffling

window Tshuffle = 300 s. The duration of the signal is shown on the y-axis.

The average counts after the shuffling are

�S,8 = �bg +
Tsig

Tshuffle

�sig

�bg

(8.7)

The contribution of physical sources depends on the source’s time profile,

energy spectrum, and the instrument’s response. Simulations of the

transient source are required to estimate it precisely. A detailed study of

this effect are beyond the scope of this thesis.

We show the results of the shuffling algorithm in Figure 8.9. The initial

data is the identical with graph in Figure 8.7. The dashed grey lines

display this unscrambled data. As the shuffling window moves through

the time series, the padding and actual data are shuffled together. Again,

we illustrate the padded parts in orange and the observation data in blue.

The shuffling is repeated 20 times. We determine the median number of

counts and illustrate it using solid lines. The shaded area corresponds

to the 1� containment. As shown in Figure 8.8, fluctuations with times

< �dec are in average smeared out. However, this shuffling approach

keeps trends in the data on time scales of �shuffle and slower. In this

example, this is most evident in the lowest energy bin. Starting at time

step 60, the initial counts are mostly 0 and 1 for roughly 15 time steps. The

shuffling only uses events in the interval of �shuffle. Thus, the scrambled

counts match closely with the actual data. The average counts of the

initial series rise to ∼ 2 counts at time step ∼ 90. The shuffled dataset

shows an identical increase.

The training and calibration phases require enough shuffleddata covering

the observations’ entire phase space. In order to generate additional data,

we can repeat the shuffling multiple times. This generates independent

realizations of the backgrounddataset according to the expected statistical

uncertainties following the Poisson distribution. By reshuffling,we ensure

a sufficient amount of background data in the less populated areas of

the phase space.
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Figure 8.9: Shuffled series of event

counts in one ROI for the different en-

ergy bins. Shown is the same observa-

tion run as in Figure 8.7. The dashed

grey curves display the initial counts.

For this graph, we repeat the shuffling

20 times.Wedetermine themedian value

at each time step shown by the solid line.

The shaded area shows the 1� contain-

ment. The blue area corresponds to the

recorded data, and the orange curve il-

lustrates the padding steps.
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8.5 Oversampling

We mentioned above the gaps between the circular ROIs. Figure 8.3b

shows that the gaps can be evenmore prominent due to exclusion regions.

In order to not entirely lose the events which fall in these gaps, we add

an oversampling of the �-like events. This adds every detected event

multiple times converting it into a cloud of events. We add each �-like
event 20 times to the analysis. Including the oversampling for each run

phase, yields consistent results.

The events have uncertainties in the reconstructed positions and energies.

As discussed in Chapter 4, the position uncertainty is given by the

point spread function. As discussed above, the energy reconstruction is

associatedwith an uncertainty and potential bias. This is described by the

energy dispersion. An example of these distributions is shown in Figure 4.2.

They are estimated from simulated events and are stored as part of the

IRFs in the DL3 files.

During the padding and shuffling phases, the �-events are assigned

following a Poisson distribution. The relative spread of the Poisson

distribution decreases for larger mean values �

�
�
=

1√
�
, (8.8)

where � is the standard deviation of the distribution. Performing the

padding and shuffling after the oversampling would decrease the ex-

pected spread of the distribution of counts. Thus, the oversampling is

the last step of the data preparation. All shuffled and original datasets

have the same relative spread from the Poisson distribution.

During the oversampling, we vary the reconstructed event positions

and energies according to the known uncertainty for each event �. We

interpolate the graphs from Figure 4.2b to calculate the radius APSF,�.

This radius includes 68% of events with the same energy and location

as the initial event. We vary the position of the oversampled events and

assume a radial symmetric probability. The shift in radius Ashift,� for each
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event is drawn from a normal distribution

Ashift,� = |N(0, APSF,�)|. (8.9)

The polar angles )� are sampled with a uniform distribution between 0

and 2�. The sampled values are converted to the shift in the latitude and

longitude of each event

Δlat = Ashift,� cos()�) (8.10)

Δlon = Ashift,� sin()�) (8.11)

We update the initial reconstructed position with these shifts to obtain

the new positions of events. Calculating the shift in camera coordinates

defined by the SkyOffsetFrame avoids significant uncertainties due to

projection effects. From this frame, the new event positions are converted

back to the origin in the ICRS.
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Figure 8.10: Example of the position

of the oversampled events. The orange

circle displays the initial event. It was

recorded during an observation at 59
◦

elevation and 286
◦
azimuth angle. It has

an energy of ∼ 185 GeV and an offset of

∼ 0.2678
◦
. The 1� uncertainty region

of the reconstructed position is illus-

trated by the orange circle with radius

∼ 0.1437
◦
. The blue points give the posi-

tion of the 19 oversampled events. The

grey circles illustrate the ROIs that fill

the FoV.

We show an example of the oversampled event positions in Figure 8.10.

It displays a subset of the complete FoV. The grey circles show the ROIs.

The orange square illustrates the initial event position. The 1� uncertainty

of the reconstructed origin is the orange circle. We oversample this event

19 times. The blue points illustrate the updated positions of these events.

This oversampling approach converts each event into a cloud of events.

While the initial event falls within a gap, a fraction of the event cloud is

contained in the ROIs. Thus, the initial event will also partly contribute

to the analysis. The probabilities of contributing to a certain ROI are

distributed following the uncertainties of the reconstruction.

In order to validate the newevent positions,we repeated the oversampling

10
5
times for the event shown in Figure 8.10. Its PSF is APSF,� ∼ 0.1437

◦
.

We calculate the distance of the new event positions to the initial event.

The blue distribution in Figure 8.11 is the distribution of distances. We

expected it to follow a normal distribution with � = APSF,�. The orange

dashed line indicates the 1� quantile of this distribution. As expected, it

matches the value of the PSF, which is given by the solid black line.

To include the uncertainty of the energy reconstruction, we sample

the energy values according to the energy dispersion of the events.

Figure 4.2a shows an example of the energy dispersion. We assume that
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Figure 8.11: PDF of the oversampled

distances from the initial position. For

this plot, the oversampling for the event

shown in Figure 8.10 is done by a fac-

tor 10
5
. We calculate the distance of the

new events to the initial one to deter-

mine the blue distribution. The orange

dashed line highlights the 1� quantile.

It is equivalent to the expected value of

A
psf
∼ 0.1437

◦
. The solid black line indi-

cates the expected value from the PSF.
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the reconstructed energy �rec of the initial event is the actual energy �true.

We draw a random value (�rec/�true)� from the energy distribution for

each added event �. We evaluate it at the offset relative to the center of

the FoV 3off and the energy � = �rec of the initial event. The orange curve

in Figure 8.12 shows an example of �rec/�true for an individual event.

The initial energy of this event is �rec = 0.08 TeV and its offset is 3off = 0
◦
.

The blue histogram shows the values sampled from this distribution.

Figure 8.12: The orange curve shows the

energy dispersion at �true = 8 GeV for a

runwith 79
◦
elevation and 146

◦
azimuth.

It is the vertical slice of the interpolated

values of Figure 4.2a at the given energy.

We sample this distribution 10
5
times for

validation. The blue histogram shows the

distribution of the sampled (�rec/�true)�
values.
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For the example event of 8 GeV, the reconstruction has a significant

energy bias 1�. Directly using the sampled distribution with bias would

shift the new energy. The bias must be corrected to keep the scales of

the initial and new energy values comparable. We calculate 1� at the

energy of the given event. In the calculation of the new energy of the

event �rec, new, the bias in the denominator

�rec,new = �rec

(�rec/�true)�
1�

. (8.12)

This formula shifts the energies according to the energy dispersion. How-

ever, the contribution by the bias is factored out.We show the distribution

of �rec, new for the example event with �rec = 0.08 TeV in Figure 8.13. As

expected the values of �rec, new vary around �rec. With the bias-correction,

the median of the new energies is equivalent with the initial energy.
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Figure 8.13: For the example of Fig-

ure 8.12, we calculate the new energies

using Equation 8.12. The median of the

distribution of �rec, new (orange dashed

line) matches the energy of the initial

energy (solid black line).

3: see also Equation 6.3.2

Statistically, the event clouds are equivalent to working with event densi-

ties. Each event represents a probability density to belong to a certain

ROI and energy bin. This approach can also help to increase the statistics

and thus has a stabilizing effect on the analysis.
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Figure 8.14: Distribution of oversam-

pling factor#
oversample

/#init in eachROI.

We group the ROIs by their distance to

the camera center. Each violin plot in the

horizontal axis represents one group of

ROIs. Eachhorizontal grey line illustrates

the ratio obtained from one iteration of

oversampling. The underlying distribu-

tions of each group are estimated using

a kernel density estimate.

The oversampling increases the number of total events by a factor of 19.

On average, we expect the counts of events in each ROI to be increased by

this factor. In Figure 8.14, we validate the oversampling for a run without

exclusion regions. The ROIs are defined as illustrated in Figure 8.3a. We

group the ROIs based on their distance to the camera center. In total, we

have six groups illustrated independently in the graph. We repeat the

oversampling ten times to increase the statistic. For each ROI, we calculate

the ratio of the number of oversampled to initial events #oversample/#init.

As the positions are varied randomly according to the PSF, each iteration

yields an independent ratio. The horizontal grey lines in the distributions

of each group show the obtained ratios. We estimate the underlying

distribution using a kernel density estimate. To do this, we determine

the bandwith from Scotts rule
3
.

The distributions vary around the expected ratio of 19 for each group.

The variances, though, increase further away from the center. The reason

for this is in the approximately radial symmetric acceptance. Only in
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4: As the oversampling affects every

stage of the analysis, it is self-consistent.

The oversampling is only applied for

identifying significant transient signals.

In case of a detection, the physical prop-

erties are investigated with traditional

data analysis tools. These, use the origi-

nal data without oversampling.

the camera center rings around the ROI have the same acceptance. For

other ROIs, it is higher in the direction of the center and smaller on

the opposite side. Thus, the event rates around the ROIs vary more

significantly. The size of the ring from which events can fall into each

ROI during oversampling depends on the PSF size. Typically, the PSF

increases further away from the center. Thus, the ring size also increases.

Eventually, this leads to the increased variances of these distributions.

Figure 8.15: Energy spectrum of initial

and oversampled events. The first row

includes all events within the FoV. The

other subplots show the distribution of

the events within the ROIs at a given

offset to the camera center.
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In Figure 8.15 we compare the normalized energy spectra of the oversam-

pled (blue) and initial (grey) events. Following the energy dispersion,

the energies of the oversampled events can be higher or lower. Thus,

the overall range of the spectra increases by including these uncertain-

ties. Above the peak of the distribution, the spectra follow roughly a

power-law spectrum. We expect more events from the most populated

energy bins falling in the less populated bins than in the opposite direc-

tion. Consequently, we expect a harder power-law spectrum due to the

oversampling. In the top row of Figure 8.15 we show the spectra for all

events within the FoV. It proves that the overall shift of the power-law

index is a minor effect. It also reveals the effect of the increased energy

range at low energies.
4

The other graphs show the spectra for individual ROIs at different offsets
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to the camera center. We notice the effects of the increased statistic with

the oversampling. With the included energy dispersion, the spectrum

does not contain any gaps.
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Figure 8.16: The number of oversampled

events in ROIs as a function of the dis-

tance to the exclusion region. We group

ROIs based on their distances to the clos-

est exclusion region.

The smearing, according to the uncertainties, can lead to edge effects. We

discussed the widening of the energy spectra in the previous paragraph.

Another edge case is the proximity of exclusion regions. Events within

these regions are removed before the oversampling takes place. Thus,

no events from these areas can end up in one of the ROIs. However, the

oversampled position of events can fall within an exclusion region when

the initial location is close to it.We remove these oversampled events from

the analysis. This edge effect can cause a decreased oversampled number

of counts for ROIs in proximity to an exclusion region. We study this

effect in Figure 8.16. In contrast to the previous discussion, we investigate

the FoV with exclusion region, which we have displayed in Figure 8.3b.

The ROIs are grouped based on the distance to the closest exclusion

region. We do not find a significant decrease in the oversampled ratio

close to the exclusion regions. Thus, this oversampling approach is also

stable for FoVs with different exclusion regions.

8.6 Preparation of Simulations

Chapter 7 introduced the simulation of the PBH evaporation signals. We

can superimpose it to a background dataset to generate the expected

observable signal. The background is generated from the actual observa-

tions using the shuffling from section 8.4. The injection of the signal is

done in two phases. First, the simulated signal is prepared into seriesSsim

in the phase prep_sim. Later, these Ssim are superimposed to background

series during inject_sim.

In the first phase, only deal with the simulated signals. We combine the

events from the seven individually simulated time windows. It yields

the simulated �-rays within the duration )sim = 100 s until the final

evaporation of PBHs. Each burst is shifted by a random time between

0 s and )step = 20 s. It accounts for the serendipitous times of the burst

relative to the defined timesteps. We also rotate all individual �-rays
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5: For technical reasons, the simulations

at each offset � are performed with the

same polar angle ) = 0. The VERITAS

IRFs are radial symmetric as well. In

contrast to simulating with a random

), the only difference is the location of

the �-rays. After the rotation during the

data preparation, there is no systematic

difference.

around the center of the FoV by an angle ) ∈ [0, 2�) assuming a radial

symmetric sensitivity of VERITAS.
5
This represents that the burst can

also have a random location relative to the ROIs. We then use the same

methods introduced above to group the events in energy, time, and ROIs.

In this phase, where we only deal with simulated signals, we consider all

37 ROIs without exclusion regions. As we look at 100 s long signals, the

resulting series Ssim have �sim = 5 steps.

In subsection 9.3.2, we group the observation based on similar data

characteristics. We select a random observing run from the same meta

bin for signal injection for each Ssim. In this way, the observing con-

ditions if the simulated signal and background are matched. Further,

we randomly select a timestep from the background data to which the

signal is injected. We then add the binned counts of Ssim to the selected

background time. The background data contains the nominal definition

of exclusion regions. ROIs, which are excluded in the background, are

also ignored during the injection. Thus, the configuration used for the

injected data represents the actual dataset.
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VERITAS detects an inevitable rate of background events passing the

nominal background selection. These are mainly �-like cosmic-ray show-

ers, electrons, and positrons. In the direction of the galactic plane, we

expect an additional component of diffuse �-rays. The background rate

depends on the observing conditions which impact the instrument re-

sponse. These effects can lead to varying rates between individual runs

but also change the rates within a single observation. To model these

influences, we add auxiliary parameters to the inputs to the RNN. These

describe the underlying differences between observations.

In section 9.1, we study the effects of different observables to the back-

ground rates. This work informs us which auxiliary parameters provide

crucial inputs. We describe the training of the RNN in section 9.2. With

this results, we are able to estimate the expected background counts. The

calibration approach discussed in section 9.3 allows interpretation of the

results with a statistical significance.

9.1 Auxiliary Parameters

In traditional analyses, the instrument characteristics are described by

the instrument response functions, including effective areas and radial

acceptances. These allow the interpretation of observations in terms

of physical parameters, such as fluxes and energy spectra. This deep-

learning-based transient detection approach has the advantage that it

does not rely on the modelling of instrument response. With suited

auxiliary parameters, the RNN can learn the instrument response under

different conditions from the observational data itself. These parameters

describe the effects which influence the detected event rates. During the

training, the RNN generates an abstract description of the inputs.

In subsection 9.1.1, we discuss the calculation of the auxiliary parameters

as part of the data preparation. Subsequently, we investigate which

auxiliary parameters provide crucial information for the RNN. We

subdivide this study into two parts. In subsection 9.1.2, we investigate

the runwise background event rates. Due to the large differences of

observing conditions, we expect these to reveal the most important

effects. Subsequently, we investigate the changes of rates within the

individual runs in subsection 9.1.3. This informs the decision on the

auxiliary parameters which are required to model the intra-run rate

changes.

9.1.1 Calculation of Auxiliary Parameters

We deal with different types of auxiliary parameters. We have the

information that is constant for the complete sequence SRNN and data

that changes for each of the �RNN steps in the sequence. An instance of

the former is the offset of the ROI to the camera center. The series SRNN

are assigned to one ROI and thus this value is constant. An example of
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the latter is the zenith angle of observation that changes in the course of

a single observing run. As discussed above, the same long short term

memory cell is representing all time steps. Thus, they also require the

identical inputs. Even a constant parameter is internally passed to each

step.

When dealing with variable data within SRNN, we discriminate between

two types of data. The first is information that is assigned to a specific

point in time. For instance, this are the time series stored in the data base

such as the zenith and azimuthal angle of observation, or the L3 trigger

rate. As the steps � of SRNN represent one specific 20 s long interval

in time, we can assign each step with the corresponding mean value.

However, for the padded time steps these data do either not exist or

are not meaningful. Thus, we use a linear extrapolation of the existing

time steps to assign the values to the padded data. As these parameters

directly describe a point in time, they are not affected by the shuffling.

The second data type is assigned to each individual recorded �-like
event. An example for this type is the multiplicity of the events. These

parameters are assigned to a given time through the timestamps of the

events. The auxiliary parameter ?(�) at step � is calculated as the average

over the values ?8 for all events that are assigned to �. During padding

and shuffling, the �-like events are reassigned to different time bins.

Thus, this procedure works identically in these cases.

9.1.2 Runwise Event Rates

For this study we select all 5725 training runs. We also apply the identical

time cuts and exclusion regions as used during the analysis. The remain-

ing events of this dataset are dominated by the background. We calculate

the average background rate for each run, correcting for the excluded

fractions as described by Equation 8.1 and Equation 8.3. The rates are

normalized to the integrated solid angles. Unless stated differently, we

refer to the average rate within the inner 1.75
◦
of the FoV.

Table 9.1:Overview of the potential aux-

iliary parameters. More details to these

variables are given in the corresponding

paragraphs below.

Parameter Description

sec(�) Secant of zenith angle of observation

| | Azimuthal angle observation

Δ)ref Years after reference point 2012.08.01

;, 1 Galactic coordinates

'L3 L3 trigger rate

dead_time Fraction of time with busy data acquisition

ped_var Average pedestal variance for complete run

"(Etotal) Average multiplicity in total energy range

"(E0),"(E1),"(E2) Average multiplicity per energy bin

� Offset angle relative to center of FoV

Below we study the dependency of the runwise background rates on

potential auxiliary parameters. Table 9.1 shows the candidates we investi-

gate. The goal is to identify variables with a strong relationship to the

target background rates. The Spearman’s rank AB coefficient is a measure

of how well two variables are described by a monotonic function [134].

A value of 1 corresponds to a perfect correlation, −1 to anti-correlation,

and 0 to no correlation between the parameters.

We also aim to identify linearly correlated auxiliary parameters. Their
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information are redundant to the RNN. However, they increase the total

dimension of the in- and outputs and thus the complexity of the model.

This possibly can harm the robustness of the DNN [144]. We use the

Pearson correlation coefficient A? as measure of the linear correlation

between two variables [145].

Zenith Angle or Observation

The zenith angle of observation � is among the best known parameter

to change the expected background rate. For a pointing closer to the

horizon, the propagation path through the atmosphere increases. This

length is described by

sec(�) = 1

cos(�) , (9.1)

where � is the zenith angle of observation.
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Figure 9.1: Correlation of �-like event

rates with sec(�) for all considered runs.

We show the dependency between the background event rate and the

sec(�) in Figure 9.1. Each row represents one of the energy bins considered

in this analysis. In the lowest energy bin, �rec < 0.33 TeV, the event rate

decreases for larger sec(�). The Spearman’s rank coefficient of AB = −0.66

confirms this. The relatively weak signals of faint air showers are less

probable to be detected with the larger propagation paths increasing

the lower energy threshold of the instrument. For the observations with

sec(�) & 1.35, the event rate typically drops to ∼ 0. For the two higher

energy bins, we find the opposite trend with AB = 0.78 and AB = 0.8,

respectively. The rates here increase by up to a factor ∼ 6. For events

at these energies, the Cherenkov signals are stronger and able to reach

the ground level. In this case, projection effects increase the collection

area causing higher rates. Due to the significant changes, sec(�) is an
important auxiliary parameter.

Belowwe are particularly interested in the influences by other observable

parameters. It is difficult to investigate less significant effects for the

complete dataset. Thus,we group all observations into three bins sec(�) ≤
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Table 9.2:Mapping of | | to the pointing
direction.

|"| " direction

0
◦

0
◦ north

90
◦

90
◦
, 270

◦ east, west
180
◦

180
◦ south

[147]: Ivanov (1999), ‘Azimuthal effect on

extensive air showers of cosmic rays’

1.05, 1.05 < sec(�) ≤ 1.15, and 1.15 < sec(�) ≤ 1.4. For the 1807 runs in

the first bin, the rate differences due to the zenith angle of observation

are only marginal. This allows identifying subdominant influences by

other parameters. However, all systematic effects need to be included

into this study. So if necessary, we also investigate the groups of 1937

and 1981 runs for the second and third sec(�) bins, respectively.

Azimuthal Angle of Observation

The magnetic field of the earth impacts the lateral development of

atmospheric air showers. Images of IACTs are sensitive to these distortions

[146]

[146]: Chadwick et al. (1999), ‘Geomag-

netic effects on atmospheric Cherenkov

images’

. Especially differences between pointing north ( = 0
◦
) and south

( = 180
◦
) are expected. The differences between the pointing east

( = 90
◦
) or west ( = 270

◦
) are negligible. For simplification, we

transform the azimuth by first wrapping the angle at 180
◦
. In this notation

the azimuth is mapped from −180
◦
to 180

◦
. We take the absolute value

of this angle which yields | |. It describes the distance from pointing

north independent of the rotation direction. We show a mapping of | |
to the initial azimuth in Table 9.2. Contrary to , we expect a monotonic

relationship of | | to the background rates

Figure 9.2: Correlation of �-like event

rates with the mean azimuth angle for

runs with 1.15 < sec(�) ≤ 1.4.
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The effects of the azimuth angle are more significant for observations at

higher �. For runs with sec(�) ≤ 1.05, the maximum correlation with

the background rates in any energy bin is |AB | ≤ 0.19. In Figure 9.2, we

show the background rate as a function of | | for the group of runs at

1.15 < sec(�) ≤ 1.4. We also calculate the medians and 1�-areas and
illustrate these in orange. For this group, we find |AB | ∼ 0.4 for all three

energy bins. This is a hint for a possible dependency. It also confirms

the expectation that the largest differences are evident between pointing

north  ∼ 0
◦
and south  ∼ 180

◦
. The changes in the event rates are

roughly a factor ∼ 2. In the lowest energy bin, the rates increase when

pointing south. However, in the two higher energy bins, we observe

the inverse trend. This can be explained by the variation of the primary

energy depending on the pointing direction [147]. Due to the identified

effects, we use the | | as auxiliary parameter to the RNN.
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[80]: Adams et al. (2022), ‘The through-

put calibration of the VERITAS tele-

scopes’

1: See subsection 4.1.3.

2: In the standard VERITAS data anal-

ysis, this effect is considered by using

independent sets of IRFs for summer

and winter.

[149]: Neronov et al. (2020), ‘Galactic dif-

fuse gamma-ray emission at TeV energy’

Time

We discussed the influences of aging effects on the VERITAS sensitivity

in subsection 4.2.6. Especially, the loss of faint events is inevitable as the

quantum efficiency of PMTs and the mirror reflectivity decreases [80].

The impact is strongest for low energy events. We show the distribution

of average rates for the group of runs with sec(�) ≤ 1.05 in Figure 9.3. As

reference time, we use 01/08/2012 which is before the first observation

considered in thiswork.We name the difference of the time of observation

and this reference Δ)ref.
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Figure 9.3: Correlation of �-like event

rate with the reference time for runswith

sec(�) ≤ 1.05.

A correlation of AB = −0.8 in the lowest energy bin confirms the dominat-

ing effect of the long-term degeneration of the instrument. Additionally,

we find periodic structures affecting all energies with a period of one

year. The summer in Arizona is monsoon time. During this period no

observations are taken. We define one season as one year of observations

starting in August. At the beginning of the seasons, the amplifier gains

for the flash analog-to-digital converter are tuned.
1
This also affects the

raw rate of detected �-like events. During each season, the atmospheric

conditions change.
2
The intra-season effect on the rate is at the level of

up to ∼ 33% for each season. Using Δ)ref as a floating point number

allows the RNN to also extract these periodic features. However, this

dependency is not trivial. Below, we identify the L3 rate as an additional

parameter that can help describing the intra-season changes. We study

this in more depth in Figure 9.8.

Galactic Coordinates

Diffuse �-rays from the Milky Way contribute to the total background.

Up to 300 GeV, the spectral shape of the diffuse �-ray at the Galactic

ridge (|; | < 30
◦
) differs from the outer Galactic plane (150 < ; < 210

◦
)

[149]. In the TeV range, however, the spectral slopes are similar and only

their scale varies. Figure 9.4 shows the flux profiles at 1 TeV for the inner

and outer regions of the Galactic plane. The strongest diffuse component
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(a) Flux profile of the inner Galactic plane −60
◦ < ; < 60

◦
.

The blue curves is the expected emission from a disc with a

constant thickness.

(b) Flux profile of the outer Galactic plane 120
◦ < ; < 240

◦
.

Figure 9.4: Galactic latitude flux profiles at 1 TeV of the inner and outer Galactic plane. The Dashed and dotted lines illustrate the galactic

diffuse and the resolved 4FGL catalog [148] source flux components. The solid lines are the total flux observed flux. The grey band shows

of the residual cosmic ray background level. [149].

[150]: Mohrmann, L. et al. (2019), ‘Vali-

dation of open-source science tools and

background model construction in as-

tronomy’

[151]: null et al. (2022), ‘Time-resolved

hadronic particle acceleration in the re-

current nova RS&#xa0;Ophiuchi’

comes from Galactic plane when pointing at |; | < 60
◦
and |1 | < 5

◦
[150].

From all processed VERITAS runs, we find 91 runs within the Galactic

plane that match all other selection criteria for training. The reason for

the relatively small number of runs is the location of VERITAS in the

northern hemisphere. Galactic plane observations from this position,

usually have large zenith angle of observation. Thus, they typically are

not considered in this thesis. The diffuse emission provides a challenging

source of systematic uncertainty. As mentioned in subsection 6.3.5, we

decide to exclude all Galactic plane observations from the datasets.

In future works, Galactic observations might be included which would

allow the detection of Galactic transient sources such as novae [151].

Thus, we also investigate possible effects in the background rates in the

VERITAS data. The smallest Galactic longitude among the 91 runs is at

|; | ∼ 30
◦
with the majority being |; | > 40

◦
. To study the impacts of the

Galactic plane, we select 14 runs from the galactic plane observed with

Δ)ref < 1 yr, | | > 140
◦
and 57

◦ < & < 63
◦
. In Figure 9.5, we compare

their event rates to 33 training runs taken outside of the galactic plane

but with the identical range of observing conditions. The underlying

distributions of rates at all energy bins are estimated using a kernel

density estimate. The blue and orange distributions represent the runs

outside and inside the Galactic plane, respectively. The dashed lines

highlight the median and dotted lines show 1� quantiles.

Figure 9.5: Background counts for ob-

servations in and outside of the Galactic

plane.
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We find a ∼ 20% decrease of the low energy �-ray rate in the Galactic
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plane. In the highest energybin,wefindan increase of the sameorder. This

indicates, that the background spectra for the selected runs at the Galactic

plane are harder. We note, that all selected runs from Galactic plane have

the identical FoV. This might be a source of systematic difference that is

not covered here. As number of VERITAS observations with sec� ≤ 1.4

is small in the Galactic plane is limits. Thus, studying this dependencies

in the scope of this thesis is challenging. Including these Galactic runs

into this analysis would require further investigation of the systematic

effects. This future work should also include observations at smaller

zenith angles of observation to increase the coverage of the Galactic

plane.

L3 Trigger Rate and Dead Time

0.82 0.84 0.86 0.88 0.90
Fractional Dead Time

250
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rp = -0.92

10 20 30 40
Number of Runs

Figure 9.6: Correlation of L3 trigger rate

and dead time at sec(�) ≤ 1.05.

The L3 trigger rate 'L3 corresponds to the total rate of events written to

disk. Whenever a trigger occurs, the data acquisition system is occupied

by writing out the data. During this time, it can not record new events.

For nominal VERITAS observations this so-called dead time is in the range

of∼ 10% to∼ 18%. We show the distribution of the run-wise L3 rates and

dead times in Figure 9.6. The Pearson coefficient for these two variables

is A? = −0.92. Due to their almost perfect linear anti-correlation, adding

both quantities is redundant. In the following, we investigate the L3

trigger rate as potential auxiliary parameter.
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Figure 9.7: Correlation of event rates

with mean L3 trigger rate for sec(�) ≤
1.05.

In subsection 4.1.3, we discussed how the VERITAS trigger system is

built to suppress unwanted background. Nonetheless, an inevitable rate

of background events is recorded. The L3 trigger rate is dominated

by cosmic-rays and fluctuations of the NSB. These are also the most

dominant contributions to the background rates. This suggests that the

'L3 might be a suited auxiliary parameter.

Figure 9.7 shows the background event rates as a function of the L3 rate

for runs with sec� ≤ 1.05. A rising L3 rate is a proxy for an increased

background event rate. This correlation is most significant at the lowest

energy bin with AB = 0.81. Above, we found similar correlations between
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the event rates andΔ)ref. Thus, we investigate whether L3 is redundant or

provides relevant information. We focus this investigation on the lowest

energy bin in which we found the strongest correlations between the

rates and these two parameters.
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Figure 9.8: Run-wise background event rate in the first energy bin 0.1 ≤ Erec/TeV < 0.33 as a function of the reference time Δ)
ref

. Each

point corresponds to an individual run. The colors denote the average L3 rate 'L3 during each run. This plot only shows runs with

sec(�) ≤ 1.05 and pointing south. Each subgraph shows one of the nine seasons that are used in this work. For each season, we calculate

the correlation between the background rates with 'L3 and Δ)
ref

using Spearman’s correlation coefficient.

Figure 9.8 shows the background rates in the first energy bin covering the

range 0.1 ≤ Erec/TeV < 0.33. Here we select only runs with sec(�) ≤ 1.05

and pointing south. This selection is based on the previous discussion to

have a more homogeneous set of observations. Each VERITAS season

is represented independently in one of the nine sub-graphs. The point

locations show the background rates as a function of Δ)ref for all selected

runs. The colors represent the average L3 rates 'L3 during these runs.

Particularly, we are interested whether the 'L3 provides a refining

information compared to the reference time Δ)ref. For each individual

season, we show values of AB between the background rates and both

variables in the corresponding subplots. The correlation with 'L3 is in

the range from |AB('L3)| = 0.48 up to |AB('L3)| = 0.7. This indicates an

important correlation between 'L3 and the target background rate. For

Δ)ref, the correlations are from |AB(Δ)ref)| = 0.01 to |AB(Δ)ref)| = 0.69.

We find that |AB('L3)| > |AB(Δ)ref)| for all but the first season. The L3

rate is a sensitive parameter to describe the intra-season changes in the
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background rates in the first energy bin.

The figures for the two higher energy bins are in FigureA.1 and FigureA.2.

For these energy ranges, the reference time |AB(Δ)ref)| typically is higher

compared to the first energy bin. Thus, the intra-season effects are better

described by the time. Indeed, the correlations |AB('L3)| are typically

weaker than |AB(Δ)ref)|. Δ)ref describes accurately the long-term trends

for all energy bins. In the two higher energy bins it is sufficient to

describe the intra-season effects. At lower energies, however, the L3 rate

more precisely describes the changes of the energy threshold within

the seasons. Both, Δ)ref and 'L3, are important variables to describe the

target background event rates.

Pedestal Variance

In subsection 4.2.1, we introduced the pedestal variance as a proxy pa-

rameter for the brightness of the night sky background. Figure 9.9 shows

the run-wise event rate of the low zenith angle group as function of

the pedestal variance. The orange lines and bands correspond to the

column-wise median and 1�-intervals, respectively. For the two high

energy bins we find the expected correlation between the rates and the

pedestal variance. The correlations are described with AB = 0.49 and

AB = 0.44, respectively. Within this group of runs, the median rates

increase by ∼ 50% as the NSB is brighter. The larger noise component

due to the brightness causes a larger component of background events.

Thus, considering this effect during the training of the RNN is important.
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Figure 9.9: Correlation of event rates

with pedestal variance for sec(�) ≤ 1.05.

The orange line shows the median of

each pedestal variance bin. The shaded

area corresponds to the 1� containment

area.

With AB = −0.14 we do not find a clear correlation in the lowest energy bin.

The thresholds during the image cleaning are adjusted to the measured

pedestal variance. For a bright NSB, the signals need to be significantly

higher to pass the cleaning. Typically, images of faint air showers corre-

spond to low energy events. The competing effects of overall more events

due to the noise and the higher threshold overall cause a nearly stable

background rate in this energy bin.
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3: See also subsection 6.3.3.
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Figure 9.11: Correlation of pedestal vari-

ance and total multiplicity"(E
total
) for

runs with sec(�) ≤ 1.05.

In the input DL3-files, the pedestal variance is stored as the average

value for the complete run. However, this parameter can change on the

timescales of a single run. Possible reasons include a bright moon rise or

fall. For simplicity, we have excluded such effects for this analysis during

the data selection
3
. However, datawithminor influences of changes of the

NSB still can be included. In future applications, the search for transient

signals might also be extended to observations with clearly changing

NSB. Thus, we seek ways to include this information as a function of the

time.
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Figure 9.10: Correlation of run-wise av-

erage pedestal variance and average L3

rate for runs with sec(�) ≤ 1.05

Figure 9.10 shows the correlation of the run-wise average L3 rate and

pedestal variance. For this group of runs we do not find a correlation

between the average L3 rate and the pedestal variance. A possible reason

for this is that we previously excluded strong effects during the DQM.

The L3 rate is not sensitive enough for the more subtle differences re-

maining. Thus, it is not suited to replace the pedestal variance. Below,

we investigate the average multiplicity of the events. For this parameter,

we find a clear correlation to the pedestal variance. This parameter can

be calculated for each time step and thus provides the sought-for time

dependent description of the NSB level.

Multiplicity

The multiplicity describes the number of images of each reconstructed

event. The geometrical reconstruction of the origin requires at least two

images. Thus, for VERITAS the multiplicity is in the range of two to four

images. The expected multiplicity depends on the energy of the primary

particle. Bright high-energetic air-showers produce strong Cherenkov-

signals that can be observed with many telescopes simultanously. Also

the NSB level can directly influence the multiplicity. The increased image

cleaning thresholds lead to less surviving images.

The multiplicity is an attribute of the events. As discussed in subsec-

tion 9.1.1, we calculate the average value for each time step. Coming

from the events themselves, we can calculate the multiplicity for each of

the three energy bins, "(E0), "(E1), and"(E2). We do not find a clear

indication, that splitting the multiplicity into the energy bins provides

significantly different information than the total over all energy bins

"(Etotal). Also, the statistical uncertainties for the total multiplicity is

smaller. Thus,"(Etotal) is preferred and investigated below.

The multiplicity might be a potential proxy parameter for the pedestal

variance. Contrary to the pedestal variance, it can be calculated as time-

dependent feature. Figure 9.11 shows the distribution between these

two quantities. With A? = −0.9 we confirm a linear anti-correlation. As

expected, the multiplicity can be used as a sensitive parameter to describe

changes of the pedestal variance. Its main advantage is the possible

time-dependent calculation that can also describe intra-run changes of

the NSB.

Figure 9.12 shows the �-like rates for sec(�) ≤ 1.05 as function of

"(Etotal). Except from the inverse slopes, the correlation is similar to

pedestal variance in Figure 9.9. It prooves, that the multiplicity is a

suitable parameter to replace the pedestal variance which might also

be helpful to describe intra-run changes. We investigate this possiblity

further in subsection 9.1.3.
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Figure 9.12: Correlation of event rates

with multiplicity for sec(�) ≤ 1.05. The

orange line shows the median of each

multiplicity bin. The shaded area corre-

sponds to the 1� containment area.

4: See section 8.1 for more details about

the ROI definition.

Offset angle

The sensitivity of the instrument depends on the position of a ROI within

the FoV. This sensitivity is roughly radial symmetric around the center

of the FoV. In traditional analyses, the dependency is described by the

radial acceptance. In this thesis, we directly use the offset angle �, instead.
The LSTM extracts the critical differences between the individual ROIs

from the data itself.
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(a) Energy bin 0.1 ≤ Erec/TeV < 0.33.
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(b) Energy bin 0.33 ≤ Erec/TeV < 1.
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(c) Energy bin 1 ≤ Erec/TeV < 100.

Figure 9.13: Dependency between ROI-wise event rate and offset angle �.

We validate this by splitting the FoV into the same ROIs used for

the analysis
4
. In total we have ROIs with 6 distinct offset angles

� ∈ {0.0◦ , 0.5◦ , 0.866
◦ , 1.0◦ , 1.323

◦ , 1.5◦}. ROIs with more than 10% of

the area excluded are removed. For the remaining ROIs, we investigate

the dependency of the background rates on the offset angle. For each

group of offsets we estimate the distribution of rates with a kernel density

estimate. The rates for all energy bins are illustrated in Figure 9.13. The

dashed and dotted lines show the median and 1�-containment.

For the two lower energy bins, we find that the rates decrease further

away from the center of the FoV. Only the first two groups at 0
◦
and

0.5◦ show overall similar distributions. This is consistent with the radial

acceptance used in the standard VERITAS analysis. In the highest energy
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bin, the median rates are slightly higher for large �. However, the statistic

at this energy bin for a single ROI is very limited. This study confirms

the expected dependency of the background rates on the offset angle

�. Thus, we include it as auxiliary parameter to describe the differences

between the ROIs.

Figure 9.14: Dependency of ROI-wise

multiplicity "(�) on offset angle � for

runs with sec(�) ≤ 1.05.
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Previously, we discussed that the average multiplicity is calculated di-

rectly from the events. During the data preparation, the events are

assigned to individual ROIs. Thus, the average multiplicity can also be

calculated independently for each ROI. We show the dependency of

the ROI-wise multiplicity "(�) on the offset angle in Figure 9.14. The

median multiplicity decreases more to the edge of the FoV. However, the

calculation of this quantity is more challenging due to the small statistics

in individual ROIs. As discussed above, "total and � are sensitive aux-

iliary parameters. Adding "(�) is only meaningful if it adds relevant

information not transported yet.
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Figure 9.15: Comparison of ROI-wise"(�) and FoV-wise"(�
total
)multiplicity. Each sup-graph represents one ROI group at offset �

with � ∈ {0.0◦ , 0.5◦ , 0.866
◦ , 1.0◦ , 1.323

◦ , 1.5◦}.

We investigate the correlations of "(�) and "total in Figure 9.15. Each
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subplot uses the multiplicity of one �-group in the x-axis. The y-axis

shows "total using all events in the complete FoV. Due to the lower

statistic, the spread of the distributions of"(�) are significantly larger

for all �.We find linear correlations in the range from A? = 0.42 to A? = 0.6.

We do not find an indication, that "(�) adds crucial information not

included in "total. Adding parameters with larger larger noise can be

counterproductive for the performance. Thus, the FoV-wise multiplicity

"total is the preferred input to the RNN.

Summary

Above we discussed each candidate for the auxiliary parameters for the

RNN. For this we investigated the run-wise averages of these parameters

in different zenith angle bins. We summarize the outcome of this study

in Table 9.3. The column intra-run specifies whether the parameter

potentially can be used to describe the intra-run changes. Below, we

investigate which of these parameters are relevant to describe these short

term effects.

Table 9.3: Summary of run-wise study of auxiliary parameters. The column use specifies whether each parameter is used in the RNN or

not. Parameters highlighted in intra-run dependency can be used to describe the intra-run variations of the background. In a separate

study below, we investigate if they provide relevant information. In the final column we summarize the most important points of this

study for each parameter.

Parameter Use Intra-run Comments

sec(�) 3 3 Propagation length of atmospheric showers

| | 3 3 Effects on lateral shower development by geomagnetic field

Δ)ref 3 3 Long-term degeneration of instrument

;, 1 7 7 Observations in the galactic plane are excluded

'L3 3 3 Intra-season changes of the instruments

dead_time 7 3 Redundant due to linear correlation to L3 rate

ped_var 7 7 Only accessible as average number for run

"(Etotal) 3 3 Description of time dependent NSB to replace ped_var
"(E0),"(E1),"(E2) 7 3 Correlation to"(Etotal), limited by low statistic

� 3 7 Radial acceptance for different ROIs

9.1.3 Intra-run Event Rates

VERITAS observing runs usually have a duration between 15 min and

30 min. During this time, the rate of detected �-like events can be influ-

enced by changes in the observing conditions. In this subsection, we are

interested in finding the auxiliary parameters which track significant

changes during the individual runs.

In subsection 9.1.2, we investigated which parameters are important to

describe the background event rates. In total we identified six suited

auxiliary parameters. Five of these, sec(�), , Δ)ref, 'L3, and "(�total),
can optionally be used as time-dependent input to SRNN. We aim to

identify which of the five potential parameters describe the short term

intra-run changes of rates. We use the full training set of 5725 runs for

this study. In the previous subsection, we showed that the offset angle �
is sufficient to describe the changes within the ROI. Thus, we integrate

the event counts within the inner 1.75
◦
of the camera. Also time cuts and

exclusion regions are handled as described above.



92 9 Training and Calibration

To investigate the intra-run effects, we apply the time-binning in 20 sec

that is also used during the analysis. The investigated time series corre-

spond to the input series Sp described in Chapter 8. It has a total of �p

time steps #� which contains the number of �-like counts in each energy

bin � ∈ {0, 1, 2}. We fit a linear curve to the series of each energy bin

5�(�) = ((#�)� + �(#�), (9.2)

where � are the increasing integer numbers of the time bins. The slopes

((#�) characterize intra-run changes that span the complete run. For

instance, a monotonic increase of #� corresponds to a positive slope.

Below, we use this slope to identify trends in the dataset. We also

calculate the standard deviations �(#0), �(#1), and �(#2) to characterize

variations during the runs. From a pure Poisson distribution, we expect

�(#) =
√
# , where # is the mean observed counts. In order to compare

�(#�) from all runs, we normalize these to the expectation

�̂(#�) =
�(#�)√
#�

. (9.3)

For a perfect Poisson distribution the expectation value 1 is independent

of #�. This allows identifying deviations independent of the overall

scale of the counts. Contrary to the slope, �̂(#�) is also sensitive to

non-monotonic trends during one run. These can be dips or bumps in

the event counts on shorter time scales.
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Figure 9.16: Dependency of the standard deviations � and the slopes ( for the counts in the three energy bins =0, =1, =2.

Figure 9.16 shows the dependency of the �̂(#�) and ((#�) for each energy

bin. Runs with �̂(#�) ∼ 1 and ((#�) ∼ 0 are considered to have stable

rates. In this study, we are particularly interested in variable runs. For

these the standard deviation is larger than expected �̂(#�) > 1. In case

of a monotonic rise or fall |((#�)| > 0. In the graph, we find two groups

of outliers with either positive or negative slopes. To identify auxiliary

parameters that cause these intra-run changes, we use the Spearman’s

rank correlation coefficient AB . If for an individual run one parameter

describes these change, we expect it to be correlated to #�. Thus, we

expect a significant |AB | � 0 for runs with large �̂(#�) or ((#�). For runs
without intra-run changes, we also do not expect a correlation. Below,

we investigate each of the five potential time-dependent parameters.

Due to its sensibility to monotonic and non-monotonic changes, we

predominantly use �̂(#�) to identify variable runs. However, ((#�)
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Figure 9.18:Histogram of the maximum

intra-run changes of the zenith angle

3max(�).

provides important insights for understanding the results.

Time

For each of the runs we calculate the correlation of Δ)ref to the counts

in the energy bins AB(#� ,Δ)ref). Figure 9.17 shows it as a function of

�̂(#�). Δ)ref increases linearly during the runs. Thus, a correlation with

the time series of �-like counts #� only occurs for runs with a steady

increase or decrease of the rates. This corresponds to |((#�)| > 0, and

the sign of ((#�) defines whether AB is positive or negative. Due to

the fact that the correlations can be either positive or negative, it does

not provide important information to describe the underlying effects.

Thus, this ‘c-shaped‘ distribution is an clear indication for an irrelevant

correlation. The same conclusion can be also drawn from the distribution

of AB(#� ,Δ)ref) and ((#�).
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Figure 9.17: Intra-run correlations of the counts in the three energy bins =0, =1, =2 with Δ)
ref

as a fuction of �̂(=).

While Δ)ref is crucial to describe the aging of the telescope, it is negligible

on the time-scales of an individual run. Thus, using a constant value

throughout each run is less complex. In this thesis, we use the starting

time of the observing run as auxiliary parameter.

Zenith Angle of Observation

In subsection 9.1.2 we discussed that the zenith angle of observation

is among the most critical parameters to describe the sensitivity of

the instrument. The auxiliary parameter sec(�) provides an accurate

description of this effects. The changes of � within each run are typically

up to few degrees. The distribution of the maximum changes within the

training runs are shown in Figure 9.18. For low zenith angles � . 25
◦
the

sensitivity is mostly independent of these changes. However, at lower

elevations they cause significant changes of the background rates for an

individual run.

We show the distribution the correlations AB(#� , sec(�)) with �̂(=) for
each energy bin in Figure 9.19. For the first energy bin, runs with large

�̂(=0) typically have a significant anti-correlation AB(=0 , sec(�)) → −1.

The reason for this is the rise of the energy threshold within a single run

as sec(�) increases. At the second energy binwe find a positive correlation

AB(=1 , sec(�)) → 1. As mentioned above, a possible explanation is due
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Figure 9.19: Intra-run correlations of the counts in the three energy bins =0, =1, =2 with sec(�) as a fuction of �̂(=).

to the projection effects. In the highest energy bin, we find a hint for

a similar effect. However, the low statistic of the background counts

makes a further investigation challenging. Nonetheless, the elevation is a

relevant time-dependent input to describe the intra-run changes of the

background rates.

Azimuth

The intra-run correlations with the absolute azimuth angle AB(=1 , | |) are
given in Figure 9.20. Except from the sign of AB , the graphs are similar

to these discussed above for sec(�). This indicates, that | | provides
meaningful input to describe the intra-run changes of background rates.

For the two low energy bins, the distributions reveal a smaller populations

of outliers, at the inverse side as the bulk. The reason for this is that the

elevation is a predominant effect. Thus, in cases that the intra-run change

is mostly driven by the elevation, it can obscure the expected changes

due to the azimuth. During training with the time-dependent auxiliary

parameters azimuth and elevation, the RNN can also learn to estimate

these effects.
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Figure 9.20: Intra-run correlations of the counts in the three energy bins =0, =1, =2 with | | as a function of �̂(=).
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L3 rate

In subsection 9.1.2,wediscussed that theL3 rate is an important parameter

to describe intra-season effects between runs. Thus, it is natural to assume

that it also might help to describe effects on even shorter time scales. We

also used it in Chapter 6 to identify periods with poor data quality.
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Figure 9.21: Intra-run correlations of the counts in the three energy bins =0, =1, =2 with '̃L3 as a fuction of �̂(=).

To investigate the intra-run correlations, we calculate the median L3

rate of each time step '̃L3. Figure 9.21 presents the distributions of the

correlations with the event counts. Compared to previous correlations

for sec(�) and | |, the total values |AB | are smaller. This is expected as we

selected only datawithmodest L3 rate changes for thiswork.Nonetheless,

we find the expected one-sided outliers in the distributions. Thus, '̃L3 is

a sensitive time-dependent auxiliary parameter.
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1.0 1.5 2.0 2.5
(N0)

1.0

0.5

0.0

0.5

1.0

r s
(n

0,
M

)

1.0 1.5 2.0
(N1)

1.0

0.5

0.0

0.5

1.0

r s
(n

1,
M

)

0.8 1.0 1.2 1.4
(N2)

1.0

0.5

0.0

0.5

1.0

r s
(n

2,
M

)

50 100 150 200 250
Number of Runs

Figure 9.22: Intra-run correlations of the counts in the three energy bins =0, =1, =2 with"(�
total
) as a function of �̂(=).

Previously, we identified that the multiplicity"(�total) is a suited param-

eter to describe the pedestal variance. In the distributions in Figure 9.22,

we do not find clear hints for a correlation with the intra-run rates. One

reason for this might be the automatic data selection that specifically aims

to identify periods with stable NSB conditions. Thus, periods in which

the multiplicity actually might provide crucial information, such as a

possible moon-rise or set, are excluded from the data-set. We conclude

that for the selected data used in this thesis, the multiplicity does not
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provide crucial intra-run information. Thus, we use themeanmultiplicity

spanning the complete observing run for this work. In future work, peri-

ods with changing NSB might be included and the multiplicity should

be reevaluated as time-dependent auxiliary parameter.

Summary

Wesummarize the results of this study inTable 9.4.We found the expected

correlations with the event rates for sec(�), | |, and 'L3. In the RNN

we use these as time-dependent auxiliary parameters. The correlations

found with Δ)ref are not relevant to the network. The starting time of the

observations is sufficient for describing the differences. For the dataset

considered in this work, the multiplicity"(Etotal) is not correlated to the

intra-run changes. In this thesis, we use the mean multiplicity spanning

the complete run.

Table 9.4: Summary of the study of intra-

run auxiliary parameters. The parame-

ters sec(�), | |, and '̃L3 are passed to

each time step. Δ)
ref

and "(E
total
) are

used as constant parameters for each

run. The descriptions behind the arrows

summarizes how the constant values are

derived.

Parameter Time Dependent Auxiliary Parameter

Δ)ref 7 → Constant starting point of observing run

sec(�) 3
| | 3

'̃L3 3
"(Etotal) 7 →Mean multiplicity spanning the full observing run

9.2 Training and Validation

During the training the weights of the networks in the LSTM are updated.

We discussed the architecture of the RNN in Chapter 5. We consider

5725 runs from nine years of observations for training. Loading all data

at once requires several hundreds of GB of memory. This exceeds the

capabilities of usual machines. Thus, we define a sequential loading

scheme for training. Figure 9.23 shows a schematic illustration of this

approach.We split the training of the LSTM intomultiple periods. During

each period, we randomly sample 500 runs from the total list of runs.

Loading the prepared data yields a set of SRNN time series. Each has

exactly �RNN steps and contains all target and auxiliary parameters. We

split the total loaded data into 70% training and 30% validation data.

During the periods, we repeat the training for ten training epochs. The

training process is repeated for multiple periods to cover the complete

training dataset.

By keeping the number training epochs during each period small, pre-

vents an over optimization of the weights for the selected subset of runs.

However, 500 runs are typically sufficient to get a good representation of

the distribution of the observing conditions. By frequently exchanging

the training training data, the total composition of data is varied. As we

show below, these points of transition provides insights into the stability

of the network.

As we discuss below, calculating the total cost function takes into account

the absolute difference to the target values. Different scales can lead to
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Figure 9.23: Illustration of the training process of the LSTM. We use the prepared training dataset. The amount of data is too large to load

it simultaneously. Thus, we perform the training in multiple periods. The grey box illustrates one training period which is repeatedly

until the training is concluded. First, we sample 500 runs from it and load this data to get the series SRNN. These are randomly split into

the training and validation samples at a ratio of 70% to 30%. We use Adam optimizer to update the weights and biases of the LSTM for

ten epochs. At each epoch, we use the validation data to monitor the current performance. We repeat the process of sampling runs and

training until the cost function converges to a minimum.

[152]: Ng (2004), ‘Feature Selection, L1

vs. L2 Regularization, and Rotational In-

variance’

certain parameters of them dominating the total cost. To avoid this, we

scale each input feature G to the same range. The scaled quantity is

Gscaled = 2

G − @<
@ℎ − @;

, (9.4)

where @; , @< , and @ℎ are the 0.0001, 0.5, and 0.9999 quantiles respectively.

The new value Gscaled is roughly in the range of −1 to 1. Using the @; and

@ℎ instead of the extreme values makes this calculation less sensitive to

outliers. Inside the RNN, only the scaled features are used. However,

during the calculation of the test statistic, the scaling of the inputs and

predictions is reversed. In this way, the calculation uses the actual counts

of �-like events.
In section 5.3, we introduced the general concept of the network. The

final output of the probabilistic layer for each feature G are normal

distributionsN(�G , �2

G). Contrary to a deterministic output, the goal of

the training is to maximize the probability of the distributions describing

the target values. For an individual feature G the log-likelihood is given

by

;(�G) B log ?(G;�G). (9.5)

Thus, we can define the cost function as the sum of all features

� = −
∑
G

;(�G). (9.6)

During training the weights in the LSTM are optimized to yield the

minimal �. We also use a L2-regularization [152]. The regularization

adds a term

�train = � + �L2 , (9.7)

where the regularization is given by

�L2 = �L2

∑
8

F2

8 . (9.8)
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HereF8 are allweights in theRNNand�L2 is the scale. This regularization

term is added during training, however not during validation. It provides

a penalty for large weights and helps to prevent overtraining in which

the DNN learns random fluctuations of the training dataset. We study

the impact of the hyper-parameter �L2 on the training process below.

We apply a recurrent dropout of 3Rec = 0.2 during the training phase

[153, 154]. For the LSTM, this randomly suppresses 20% of the candidate

vectors )8;34cC added to the cell state

cC = fC � cC−1 + it � 3Rec(c̃C). (9.9)

Except for the dropout, it is equivalent to Equation 5.25. Further, we add

a dropout of 3DecIn = 0.2 of the inputs vectors of the decoder phase. In the

chosen architecture, these are the repeated hidden states calculated by

the encoder. With these dropouts, the LSTM deals with larger variations

during training. As a consequence, the neurons are expected to be less

dependent on the other hidden units [155]. With the dropout more robust

networks can be trained. Furthermore, it is an additional method to

prevent overtraining.

The training data is used to optimize the weights using the Adam

optimizer with learning rate &. During each period ?, we start with an

initial learning rate &? . It is kept constant for the first three training

epochs of the period before decreasing it by 5% each subsequent epoch.

From one epoch to the next, the total learning rate is decreased by 10%

&?+1 = 0.9 · &? . (9.10)

This learning rate schedule gives more importance every time new

data is loaded. Decreasing & during the periods, contributes to not over-

optimizing to each subset of runs. Figure 9.24 illustrates this learning

rate schedule. The impact of the initial learning rate &0 at period ? = 0 is

investigated below.

For selecting the size of the neural network, we train the network with

different number of layers ! and neurons. The objective is to provide

enough flexibility to achieve a good description of the input data. How-

ever, keeping the total size modest prevents overtraining and helps

building simpler model. We find that an LSTM with three layers with 32,

64, and 128 neurons, respectively, fulfills these criteria. In the following,

we use this LSTM size. We also note, that a further optimization of this

hyper-parameters might influence the performance.

During training, the model parameters are optimized to minimize �train.

However, the performance is validated on the independent validation

dataset �valid. Naively, it is expected that the �train < �valid. However,

�train has the additional L2-regularization term and is influenced by the

dropouts. Both of these typically increase the cost functions. In this case,

it is expected that �train > �valid.

The initial learning rate &0 and the scale of the L2-regularization �L2 are

among the most important hyper-parameters during training [156]. We

scan a range of parameters to find suitable values for these parameters.

For each iteration, we train the LSTM for three periods. We monitor

�train and �valid to identify which values provide a stable training. We

use a fixed random seed for the selection of runs and splitting the data

for training and validation. In this way, each training process utilizes

the identical datasets. Nonetheless, the training is subject to further
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Figure 9.25: Cost functions during the first 3 training periods of the LSTM with different hyper-parameters. The rows corresponds to

different initial learning rates &0 and the columns to the scale of the normalization �L2. Black curves show the training cost �train and

orange the cost for the validation data �
valid

.

randomization. Among these are the selection of the mini-batches and

the initialization of the weights of the LSTM. In this thesis, we use a batch

size of � = 128.

We show the results for the optimization of the hyper parameters in

Figure 9.25. Each row shows the results fixed learning between 0.001 up

to 0.03. The columns correspond to the scale of L2-regularization between

0.001 and 0.1. Overall, we find that the largest values, &0 = 0.03 and

�L2 = 0.1, do not yield stable results. These correspond to the last row
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Table 9.5: Summary of training hyper-

parameters.
Hyper-parameter Value Comment

! 3 Number of layers

=neurons [32, 64, 128] Number of neurons per layer

3rec 0.2 Recurrent dropout

3DecIn 0.2 Decoder input dropout

� 128 mini-batch size

? 10 Number of epochs per periods

=runs 500 Loaded runs per period

�L2 0.003 L3-regularization scale

&0 0.001 Initial training rate

5? 0.1 Decrease of & per period
54 0.05 Decrease of & per epoch

and last column, respectively. Among the observed effects are steadily

increasing cost functions, inability to learn the trends, and relatively

slow and unstable learning process. Further, we also find instances in

which the training fails all together, (&0 ,�L2) ∈ [(0.03, 0.01), (0.01, 0.1)].
The changes in � in these cases are only due to the exchange of the train-

ing and validation data. Reasons for these effects might be the random

initialization of the weights. Repeating this study several times, showed

a high probability of getting such results for these large values of &0 and

�L2.

The remaining six graphs (�L2 ∈ {0.001, 0.01}, &0 ∈ {0.001, 0.003, 0.01})
all show the expected decrease of the cost functions. We note that the

evolution � is smoother for smaller &0. Also the best values of � after

three training periods are reached for &0 = 0.001. We select this value

for the training of the LSTM. The lowest values of the cost functions are

reached for �L2 = 0.001. However, it is a trade-off with smoother graphs

that are reached using a larger regularization scale. We decide to select an

intermediate value of �L2 = 0.003. We summarize all hyper-parameters

used during training in Table 9.5. With these, we initially run the training

for a total of 20 periods. With randomly selecting 500 runs at each period,

in average all training runs are loaded more than once.

Figure 9.26: Cost function during train-

ing of LSTM with envelope. The shaded

area illustrates the range of the cost func-

tion reached at the beginning and the

end of each period.
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We monitor closely the cost functions to investigate the performance of

the LSTM. Their evolution during the training is illustrated in Figure 9.26.
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The start of the periods are illustrated by the vertical dashed grey lines.

As they are associatedwith a replacement of the the data, �train and �valid

show the characteristic jumps. Within each period, the RNN optimizes

the weights for the selected data. This leads to an overall decrease of �.

The shaded areas illustrate the enveloping values at the beginning and

the end of the periods. The starting values are particularly interesting

as they represent how robust the performance is for different selections

of data. For a stable performance, we expect this value to be rather

constant. The values in the end of the periods show the performance after

optimizing the network for this certain data. We find that the enveloping

cost functions are roughly constant starting at period 13.

To decide if the training should be continued further, we investigate these

periods. We show a zoomed graph of � in Figure 9.27. The dashed lines

show fits to the starting and end values of �valid. The slopes over these

seven periods are 0.002 and −0.008, respectively. Thus, the overall trend-

ing changes of the cost function over these periods is negligible. Also it is

sign of a robust network that performance is stable with different slices

of the input data. Thus, we conclude, that the network is successfully

trained and finish after the total of 20 training periods.
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Figure 9.27: Zoom in to the cost function

during training of LSTM. The grey line

shows the cost function of the training

dataset �train

9.3 Calibration Pipeline

As discussed above, the calibration allows to interpret a recorded signal

with a statistical significance. The general concept of turning any test

statistic to a probability based on background samples was briefly intro-

duced before. The only requirement to the TSs is that they increase for a

more significant detection, i.e. stronger excess of �-rays.
In order to store and evaluate the TS distributions we parameterize the

background results. We give details on this parametrisation in subsec-

tion 9.3.1. This calibration depends on the overall background rate and

the accuracy of the RNN. For an accurate description, we split the total

data-set into meta bins. The calibration is done independently in each of

thesemeta bins.We describe the selection of these bins in subsection 9.3.2.

The calibration is implemented in three individual stages. The TS for a
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single series and energy bin was introduced previously in Equation 5.29.

The following stages combine the TS values of each previous stage to

obtain a new TS. The individual steps of the calibration pipeline are

discussed in subsection 9.3.3.

9.3.1 Parametrisation of the Test Statistic
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(a) Probability density function of the normal distribution.
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(b) Survival function of the normal distribution. The orange

dashed line shows the parametrisation of the survival function

that yields the conversion to a ?-value. The theoretical value is

illustrated by the dotted blue curve.

Figure 9.28: Probability density function and survival function of a normal distribution with � = 4 and � = 2 reconstructed constructed

from =B = 10
6
samples.

The TS values for the background distributions are roughly distributed

following a normal distribution. Its probability density function (PDF) is

given by

PDF(TS) = 1

2

√
2�

exp

[
−1

2

(
TS − �

�

)
2

]
, (9.11)

where� is themean and �2
is the variance of the distribution. An example

of this distribution is shown in Figure 9.28a for =B = 10
6
samples. Both

parameters are determined by the quality of the background predictions

from the RNN. We will discuss this in more depth in section 9.3.3. The

fraction of values above a certain value is described by the survival

function (SF)

SF(TS) = 1 − cdf(TS) = 1 −
∫

TS

−∞
PDF(G)d(G). (9.12)

Here CDF is the cumulative density function integrating the PDF up to

a certain TS value. It describes the frequency that the value is smaller

than TS. Figure 9.28b gives the survival function of the distribution.

Evaluated on the background dataset, the survival function corresponds

to the probability of obtaining a certain value of G ≥ TS. Thus, it directly

describes the sought-for mapping of the TS as the statistical probability.

We refer to this value as the ?-value. A small ?-value corresponds to a

small probability of an event being caused by a statistical fluctuation

of the background. This corresponds to a higher significance for the
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detection. The minimum ?-value that can be inferred directly depends

on the number of background events

min(?) = 1

=B
. (9.13)

Creating a sufficient amount of background data to extend to required

range of very small ?-values is not feasible. However, a mapping from the

TS ?-value is crucial to determine the significance of rare events. Thus,

we use a parametrisation of the survival function to extend to higher

significances. We fit the final part of the survival function by a log-linear

curve

5 ()() = 10
TS×0+1 , (9.14)

where 0 describes the steepness of SF and 1 is a normalisation. For this

fit, we use the range covering the last two orders of magnitudes in the

?-values. We use this fit to extrapolate the graph to smaller ?-values.

The complete parametrisation is the combination of the direct interpola-

tion for sufficiently small TS values and the log-linear fit at higher TS.

In Figure 9.28, this parametrisation is shown by the orange curve. We

note that for the normal distribution the analytical value of the survival

function is given by

sf(TS) = 1

2

[
1 − erf

(
TS − �
�
√

2

)]
, (9.15)

where erf is the error function. As illustrated by the blue dotted curve in

Figure 9.28b, it is concave in the log-linear space. Approximating it by

Equation 9.14 yields higher ?-values making this parametrisation more

conservative.

9.3.2 Calibration Meta Bins

The interpretation of the test statistic depends on the absolute background

level. Also the accuracy of the background estimation directly influences

the expected distributions. A bias in the prediction leads to a shift � of

the PDF and SF. Further, a large spread of the predictions corresponds to

larger error � corresponding to amore gentle fall of the SF. To consider the

differences in the observed data, we group these into meta bins. These

contain data with similar conditions which are represented in small

changes of the background rates. We base this selection on the previous

investigation for the auxiliary parameters in section 9.1. Selecting more

meta bins improves the agreement of data in the bins. However, it also

decreases the statistic which leads to a less precise estimate of the survival

function. Thus, it is important to consider the most important differences

while keeping the total number of bins low. Previously we identified

sec(�), | |, �, and Δ)ref as the most critical parameters to describe the

background event rates.

Figure 9.1 shows the smooth transition of the event rate as a function of

sec(�). We define a total of four linear meta bins with width 0.1 in this

parameter spanning the total range from 1.0 to 1.4. The main difference

in the azimuth are due to the pointing towards north or south. This was

illustrated in Figure 9.2. Thus, we define two meta bins with | | ≤ 90
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and | | > 90.

Themost significant differences due to the time are the long term changes.

For the calibration, we study the differences between each of the nine

epochs. We show the median event rate and the 1�-containment for each

energy bin in Figure 9.29. Due to the changes in the energy threshold, the

most significant differences are at the lowest energy bin. We define three

meta bins in )eff, [0, 3), [3, 6) and [6, 9), which group together epochs

with similar rates.

Figure 9.29: The markers show the

season-wise median rate per VERITAS

run for the three energy bins. The error

bars and bands show the 1� contain-

ment.
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The correlation of the background rate and the offset angle is investigated

inFigure 9.13a. In thiswork,wehave sixdiscrete values of � corresponding
to the locations of the ROIs. The ROIs at 0

◦
and 0.5◦ show almost identical

distributions. This is in alignment with the radial acceptance which is

roughly constant in this range. For the calibration, we do not need to

differentiate between these two. As all other offset angles have revealed

a decreasing sensitivity these are grouped in independent meta bins. In

total, we define five offset meta bins.

Table 9.6 shows the summary of meta bins. The values of sec(�), | |, and
)eff do not change substantially within a single observing run. We use

the run-wise mean values to group each observations into on of the meta

bins. Thus, we refer to these as run-wise meta bins. In contrast, the offset

angle � is a ROI-wise meta bin. Each observing run encompasses several

ROIs. Thus, the data from a single run is subdivided into these five meta

bins.

Table 9.6: Summary ofmeta bins. In total

we define 24 run-wise meta bins in the

three parameters sec(�), | |, and )
eff
. In

combination with the five ROI-wise bins

in �, the total number of meta bins is 120.

Parameter N Range Scope

sec(�) 4 [1.0, 1.1, 1.2, 1.3, 1.4] run

| | 2 [0, 90, 180]deg run

)eff 3 [0, 3, 6, 9] yr run

� 5 (0, 0.5), 0.866, 1.0, 1.323, 1.5 ROI

9.3.3 Calibration Stages

The most elemental TS is calculated for an individual energy bin in

one ROI. However, the information of a single transient signal might

be spread over several energy bins and ROIs. Thus, combining these



9.3 Calibration Pipeline 105

information can improve to overall detection efficiency. In this part, we

introduce the novel approach of calibration stages. They allow sequential

combination of results from the previous stages to a new test static.

This TS itself may be calibrated to be interpreted as a ?-value using the

parametrisation in subsection 9.3.1.

In this thesis, we deploy two individual stages. The first stage deals

with the single time series per energy bins and ROIs. During the second

calibration stage, the energy bins are combined. These stages, deal with

ROI specific results. Thus, the relevant meta bins include the run- and

ROI-wise meta bins. We summarize these in Table 9.7.

Stage Description Meta Bins

1 single energy and ROI sec(�), | |, epoch, �
2 combine energy bins sec(�), | |, epoch, �
3 combine neigboring ROIs sec(�), | |, epoch, �
4 combine full FoV sec(�), | |, epoch

Table 9.7:Overview of calibration stages.

The first two stages deal with single en-

ergy bins and ROIs. The energy bins are

combined in the second calibration stage.

In the future, the calibration stagesmight

be extended by a combination of neigh-

boring ROIs and the full FoV.

In future work, the calibration might be expanded to also combine

the results from neighboring ROIs. This might improve the sensitivity

to events which are not well aligned with the ROIs. Further, also the

combination to a full FoV TS might be possible. For this stage, only the

run-wise meta bins would be relevant. Including these two calibration

stages is beyond the scope of this work.

In case of the detection of a transient signal in a combined TS, the signal

can be traced back to the earlier calibration stages. This is possible due

to the sequential construction of the TS. It gives direct insight to the

locations and energy bins which are important for the detection.

The calibration interpret the single windows SRNN of the sliding window.

They do not account for the total number of series which are probed.

For the final calculation of the significance, the trial factors need to be

considered. This converts the ?-value from a local significance to the

global significance. We discuss the trial factors subsequent to the three

calibration stages.

Single Energy Bin Calibration

The first calibration stage calculates a TS for each energy bin � and each

ROI A. We define this most fundamental test statistic in Equation 9.16:

TSsingle(�, A) =
�dec∑
�=1

((�, �, A) − �(�, �)√
�(�, �, A) + 1

. (9.16)

It incorporates the difference between the measured signal ((�, �) and
predicted background �(�, �) summed over all �dec decoder steps of

SRNN. An increasing ( yields a higher TS fulfilling the critical condition.

Further, we apply a filter on the minimum number of events. For each

energy bin, we check if it contains at least two �-like counts in two of the

�dec steps. If this conditions is not matched for at least one energy bin,

the TS for all energy bins is set to −1 which corresponds to a downward

fluctuation. This prevents a possible detection with events in only few

time bins which has a stabilizing effect on the analysis.

For the calibrationwe evaluate Equation 9.16 for the prepared background

dataset. The complete data is grouped into the 24 run-wise and 5ROImeta
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Figure 9.30: Survival function of the TS

distribution in the first energy bin.

5: See the fundamental test statistic de-

fined in Equation 9.16.

bins. In each meta bin, we calculate the survival function. Figure 9.30

shows an example for the first energy bin � = 0 of a singlemeta bin. These

are parametrized using the the procedure described in subsection 9.3.1.

Due to the filter on the number of �-rays, an increased number of

events might occur at TS = −1. This effect is in the range of the direct

parametrisation of the TS. Thus, the potential step in the survival function

is handled correctlywithout any influence on the log-linear fit. Evaluating

the survival function yields the probability ?single(�, A) at the first stage.

Combine Energy Bins

The goal of this second calibration stage is the combination of the three

energy bins �. The intention behind this stage is that the transient signal

might cause an excess in all three energy bins. Also the new test statistic

has to increase for a stronger signal. As ?single decreases logarithmically,

we can define a new statistic

TSe(A) = −
∑
�

log
10
?single(�, A). (9.17)

This test statistic is calculated in the same 120 meta bins as the first stage.

Again, the survival function for the background data is parametrized to

get the mapping to ?e(A).

Trial Factors

Considering the trial factors is inevitable for calculating an accurate statis-

tical probability. The calibration pipeline introduced above intrinsically

takes care of much of this. The sliding window approach to convert Sp to

SRNN leads to the same time bin being probed �dec times. This sliding

window is equally applied to the inference and the background dataset

for calibration and training. As every statistical fluctuation is sliding

through the complete decoder for the calibration, the distribution of

TS values also includes the effects of multiple occurrence of each value.

Hence, the mapped ?-values are corrected for this effect. Equally, the

combination of multiple TS values is done identical for both datasets.

Thus, these possible trial factors are handled correctly with the mapping

to the ?-values.

The only effect not considered is the number of total time positions

probed by the analysis. Below, we assume that the sought-for detectable

signals have a duration of �sig steps. For the simulated signals, we fixed

the total signal length to �sig = 5 steps. In Figure 9.31, we highlight the

position of the five signal steps by the orange circles.

Not every single time step is probed independently but the sum of all

�dec = 5 steps
5
. The four steps before and after this signal are illustrated

by the blue circles. Every row represents one selected iteration of the

sliding window. The purple area shows the position of the decoder win-

dow at each iteration. We label the shown iteration with = = 1 meaning

the signal just enters the decoder, = = �dec = 5 where the signal overlaps

completely with the decoder, and = = �dec + �sig − 1 = 9 corresponding

to the last sliding window with signal contributing to the decoder. We

expect the highest significance of detection for one of the iterations that



9.3 Calibration Pipeline 107

6: The strongest signals are close to the

final evaporation of the PBHs. Thus, the

highest detection power is during the

last time steps. As only detection or non-

detection is relevant in this work, simu-

lating the last five steps is sufficient.

[157]: Šidák (1967), ‘Rectangular Confi-

dence Regions for the Means of Multi-

variate Normal Distributions’

covers the complete signal with the decoder. In this graph this corre-

sponds to = = 5. This graph shows that a signal of length �sig is tested a

total of =test = �dec + �sig − 1 times.

Signal

1 2 43 5 6 7 98 10 11 12 13

1 2 43 5 6 7 98 10 11 12 13

1 2 43 5 6 7 98 10 11 12 13
Figure 9.31: Location of the decoder win-

dow �
dec

= 5 relative to signal with du-

ration �sig = 5 during different iterations

of the sliding window =.

Above discussion assumes that the relevant duration of the signal is

known a priori. In the case of PBHs, the expected strength of the signal

is scaled with the distance of the PBH # ∝ 3−2
. For evaporations with

distances 3 � 1 pc, also detectable signals of more than five steps are

expected
6
. However as the signals get fainter, only the last time bins

might be relevant. In a consequence �sig can be flexible. In this work,

we investigate the results manually to identify which candidate events

are originated by the same or discrete events. A generalization of this

approach is beyond the scope of this thesis.

We use the most conservative value for =test to correct for the trial factors.

This is done by assuming the shortest possible signal duration �sig ≥ 1.

This leads a minimum value of =test ≥ 5. In a dataset with =total probed

series, the upper limit for the number of independently detectable signals

is

=trial =
=total

=test

≤ =total

5

. (9.18)

The value of =total incorporates the total observing time, the number of

probed ROIs, and the duration of the timesteps.

In this work we define the detection of a transient source to be an outlier

of > 5� from the background. This corresponds to a confidence interval

of det. ∼ 5.73 × 10
−7
. We modify this confidence interval according to

the Šidák correction [157]

corr. = 1 − (1 − det.)1/=trial
(9.19)

in order to arrive at a global significance.
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Figure 10.1: Distribution of �-like event
counts in the training (blue) and inference

data (orange). Each graph represents one

of the three energy bins �.
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In the previous chapters, we introduced all the necessary preparation

to search for transient sources in archival VERITAS data using the deep

learning transient detection. In this section, we apply this method to

search for the evaporation bursts of PBHs. It is the first time in the curse

of this thesis that we use the unshuffled dataset. Thus, in section 10.1,

we validate its consistency to the scrambled data used for training

and calibration. Using the simulated signals, we then calculate the

effective search volume +eff for PBH evaporation events. This +eff and

the observation time )obs define the constraining power of this analysis.

We discuss this estimation in section 10.2. After estimating the detection

power, we apply theDL transient detection to the entire selectedVERITAS

dataset. We investigate these results in section 10.3. Finally, we present

the conclusions and prospects of this study in section 10.4.

10.1 Validation of Shuffling

In section 8.4, we developed the approach for generating the required

background dataset from real data. This background data is used during

the training and calibration phases of the method. The objective of

shuffling the �-like events in time is to remove the contamination of

potential transient sources. Detected transient sources correspond to

a short excess of �-like events. By scrambling the events, these are

distributed over multiple time bins. Outliers with a large number of

events are smeared. We introduced this concept in section 8.4. The key

feature of our approach is a sliding shuffling window that uses a 300 s

long range of the data. As discussed above, it should be able to flatten

strong transient signals while still keeping the O(min) long features of

the data.

Figure 10.1 shows the distributions of event counts per energy bin �
for the shuffled training data (blue) and inference data (orange). In this

graph, we only consider periods used during both phases. Thus, the data

are comparable. The peaks in the distribution at every multiple of 20 are

due to the oversampling. If the initial event is in the middle of an ROI,

all oversampled events likely end in the same ROI. Closer to the edge of

the ROIs, the probability that fractions of the oversampled events end in

different ROIs increases. The distributions are in good agreement, up to

high counts in all three energy bins. The slight difference at the end of

the distributions is the expected behavior.

Also, validating the data of individual runs does not show any differences.

As we discuss in section 9.1, also additional parameters are used in the

RNN. These are essential to describe the different observing conditions

and influence the predictions of background counts. For completeness,

we also investigate these for systematic differences. The used auxiliary

parameters are the secant of zenith angle of observation sec(�), the
absolute azimuth angle of observation | |, the reference time Δ)ref, the

L3-rate 'L3, the offset angle of the ROIs �, and the total multiplicity
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Figure 10.2: Difference in "(�
total
) be-

tween training and inference data. The

blue graph shows the distribution of the

run-wise differences of the multiplicity

between the inference data"� and train-

ing data") . To put this difference into

context, we also show the distribution of

multiplicities in the unshuffled inference

data in grey. For comparison, we subtract

the mean value"� from this data.
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"(�total). From these sec(�), | |, and 'L3 are used as time dependent

parameters.

Only the multiplicity"(�total) is calculated directly from the events. As

the composition of the data is slightly changed during the shuffling, the

averagemultiplicity is also affected.We show this difference for all runs in

Figure 10.2. The blue distribution shows the absolute run-wise difference

of the multiplicities "�(�total) in the inference data to ")(�total) in the

training data. To put these differences into context, the variations from

one run to the other are relevant. Thus, the grey distribution shows

the total spread of the multiplicities in the inference data set. For this

comparison, we subtract the mean value over all observing runs in

"�(�total). The observed differences between "� and ") are due to

statistical fluctuations in the shuffling. Compared to the spread between

individual runs, this effect is usually small. The other five auxiliary

parameters are independent of the �-like events. Thus, the shuffling does

not affect these. This study shows that the training and inference datasets

are in good agreement.

10.2 Detection Efficiency and Effective Volume

The goal of this thesis is to constrain the abundance of PBHs. This section

applies our implemented DL-based transient detection method to the

simulated dataset. The goal is to determine the effective search volume

+eff, which is probed by this analysis. En route, we calculate the expected

detection efficiency for PBHs.

Previously, we introduced the simulation of PBH evaporation signals for

VERITAS. These are superimposed to a shuffled background dataset. We

discussed this approach above in section 8.6. In this section, we apply the

transient detection method to probe whether we can detect these signals.

Contrary to the real analysis, we know that a source is present. For the

simulations, we are only interested in whether a burst is detected or not.

We calculate the significance of an event from the ?4 -value with

�4 = isfnorm

( ?4
2

)
, (10.1)
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where isfnorm is the inverse survival function of the normal distribution,

and ?4 is the statistical probability assigned by the calibration after

combining the individual energy bins. We consider a simulated PBH

detected if we obtain a 5� significance for any timestep and ROI of the

prepared simulation data. Counting the fraction of simulated bursts that

are detected yields the detection efficiency.

In section 7.2, we discussed that we perform a set of simulations for each

meta bin. This way, the full range of observing conditions we consider

in this analysis is represented. The background data into which we

inject the signals are selected from the same meta bin. It is prepared

using identical data selection, ROI settings, and exclusion regions that

are also applied for the inference data. Thus, the superimposed dataset

represents all properties of the actual data. Applying the procedure

to each meta bin gives an accurate average of the detection efficiency

for the given observing conditions of this bin. The PBH distance 3 and

location � are known for the simulations. We calculate the fraction of

detected PBH bursts 5<(3, �) as a function of the source parameters

and the meta bin <. We represent the 24 run-wise meta bins by a tu-

ple < = (<(| |), <(Δ)ref), <(sec(�))). These bins are summarized in

Table 9.6. The range of each bin is<(| |) ∈ (0, 1),<(Δ)ref) ∈ (0, 1, 2), and
<(sec(�)) ∈ (0, 1, 2, 3).
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Figure 10.3: Detection efficiency

5(0,0,0)(3, �) for meta bin < = (0, 0, 0) as
a function of the PBH distance 3 and

offset angle �.

Figure 10.3 shows the calculated detection efficiency 5(0,0,0)(3, �) in meta

bin < = (0, 0, 0). We obtain a better detection efficiency for events at

small distances 3. This is expected as the detectable signal scales with

3−2
Further, we find that the detection efficiency sharply decreases at

a given distance 3max(�). In general, observations closer to the camera

center, small �, yield a larger 3max. This reflects the higher sensitivity

closer to the camera center, which is crucial for detecting faint signals.

We note, that at 3 . 0.5 pc the detection efficiency decreases for �→ 0
◦
.

This might seem non-intuitive as the sensitivity increases closer to the

center of the FoV. The origin of this effect is the definition of exclusion

regions. Two reasons need to be considered for this interpretation. The

first is a geometrical effect. When an exclusion region and PBH evapora-

tion occur at a small �, the probability of overlap is considerable. In the

case of � = 0
◦
, it reaches 100%. However, further away from the center,

the probability of spatial coincidence decreases. The second reason is

the definition of exclusion regions around sources. Typically, VERITAS

observes sources at an offset angle of � = 0.5◦. We use a circular exclusion
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Figure 10.4: Detection efficiency with exclusion regions for the 24 run-wise meta bins as a function of the PBH distance 3 and offset

angle �. The meta bins are indicated by the numbers in the upper right corner of each graph. This tuple indicates the meta bin in the

azimuthal observation angle <(| |), the reference time <(Δ)
ref
), and the secant of the zenith angle of observation <(sec(�)).
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1: E.g. see the example in Figure 8.3b.

region with a radius of 0.35
◦
around VHE �-ray sources detected with

VERITAS. This is sufficient to overlap with more than 10% to multiple

ROIs. All of these ROIs are excluded from the analysis. This also affects

the only ROI positioned at center � = 0
◦
.
1
Having this ROI excluded for

many observations limits the detection efficiency close to the camera

center.

We show the detection probabilities 5< for all meta bins in Figure 10.4. As

expected, the detection efficiency depends on the observing conditions

represented by the meta bins. Each of these graphs can be interpreted as

a representative of the mean performance for the corresponding meta

bin. In general, the efficiency to detect faint events at lager 3 decreases

for lower zenith angles <(sec(�)) → 3. This is due to the increase in

the energy threshold, which causes a decrease in low-energy events.

Observations taken in more recent data, where the throughput is lower,

<(Δ)ref) → 2, increase this effect. Also, a relative decrease of 5< due to

the exclusion regions changes from one meta bin to the other. E.g. for

< = (0, 2, 3) we barely observe this effect. This is because the fraction of

runs with detected sources is small in the selected runlist.

Having determined 5<(3, �), we can calculate the effective search vol-

ume +eff(<). It is the integral of the detection efficiency in spherical

coordinates

+eff(<) =
∫

2�

0

∫ ∞

0

∫ ∞

0

5<(3, �)32

sin (�)d3 d� d) (10.2)

= 2�

∫ �max

0

∫ 3max

0

5<(3, �)32

sin (�)d3 d�, (10.3)

where ) is the polar angle around the center of the FoV. In our case, the

limits �max and 3max correspond to the maximum values we simulated.

Based on expectations from Figure 10.3, we choose �max = 2
◦
and

3max = 2.5 pc. Figure 10.4 shows that at both of these maximum values,

no further PBH bursts are detected. Thus, increasing the maximum

values would be redundant.

We perform this integration numerically using the detection probabilities

shown in Figure 10.4 The distance 3 of the simulated PBHs is in 25

logarithmic steps from 0.15 pc to 2.5 pc. We perform the integration of

Equation 10.3 over 3 in logarithmic scale. The offset angle � has 11 linear

values between 0
◦
and 2

◦
. We use a two-dimensional interpolation of the

detection efficiency to obtain arbitrary values for the integration. We also

extrapolate the graphs to distances lower than 0.15 pc. For this we use

the constant values of 5<(�, 3 = 0.15 pc). It is a conservative assumption,

as the number of �-rays reaching the detector increases with 3−2
. On the

other hand, the exclusion regions remain a limiting factor independent

of 3. However, when solving the integration of a cone, the exact values

of 5< at small distances have a minor impact on the total results.

We show the results for the effective volumes in for all 24 run-wise meta

bins < in Figure 10.5. Typically, the volume is larger for small zenith

angles of observations (<(sec(�)) → 0) and pointing south <(|(|)) = 1.

This is an expected trend, as these observations typically correspond to

a higher sensitivity of VERITAS. The differences between the )ref-meta

bins are most evident for observations at large zenith angles. Among the

meta bins, the values of effective volume vary by a factor up to ∼ 2.3.
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Figure 10.5: Comparison of the effective search volume +<
eff

for all meta bins <. The tuples < consist of the bins in the azimuthal

observation angle <(| |), the reference time <(Δ)
ref
), and the secant of the zenith angle of observation <(sec(�)).

10.3 Constraining the Rate of PBH Bursts

In this section, we run the inference stage of the DL-based transient

detection. It is performed on the unscrambled dataset we prepared in

Chapter 8.We consider observations taken between 2012 and 2021 for this

thesis. The data is selected using the automatic data quality assessment

developed in Chapter 6. We summarize the selection of the data in

subsection 6.3.5.

During this work, we have set one of the 9496 runs aside to run some

validation. The selected run is locatedwithinmeta bin< = (0, 2, 0). In the

following, it is removed from the dataset. The total remaining observing

is 4222.36 hours. For a fixed effective search volume, the expected number

# of detecable bursts scales linearly with the observation time )obs. The

total observation time is distributed over all 24 run-wise meta bins.

Figure 10.6 shows the observing time )<
obs

per meta bin < with orange

squared markers. We also show +<
eff

which we introduced before in

Figure 10.5 in blue.
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Figure 10.6: The orange squared markers show the observation time )<
obs

per meta bin <. The blue points illustrate +<
eff

which we

introduced in Figure 10.5. The tuples < consist of the bins in the azimuthal observation angle <(| |), the reference time <(Δ)
ref
), and

the secant of the zenith angle of observation <(sec(�)).
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Figure 10.7: The upper limit on the num-

ber of detected counts � as a function of

the number of observed events # at a

confidence interval 2 = 0.99.

10.3.1 Calculation of Upper Limits

Having the effective search volume and the observing time, the number

of expected events in one meta bin is

#< = Aburst+
<
eff
)<

obs
, (10.4)

where Aburst is the local rate of PBH evaporations per volume. For the full

dataset, the expected number is

# =
∑
<

#< = Aburst

∑
<

+<
eff
)<

obs
. (10.5)

We aim to constrain the rate Aburst which we can calculate from the

number of observed events

Aburst =
#∑

< +
<
eff
)<

obs

. (10.6)

The observed number of counts follows a Poisson distribution. The

probability of obtaining # detections is denoted by %(# |�), where � is

the mean value. To calculate an upper limit, we set this probability to

1 − 2, where 2 is the confidence level

%(# |�) = �# 4−�

# !

≡ 1 − 2. (10.7)

Empirically solving this equation for � yields the upper limit on the

actual number of countsUL2(#).We calculate upper limits at the 0.99 and

0.95 confidence intervals in this work. We show the value of UL0.99(#)
as a function of the detected number of events # in Figure 10.7. In case

no events are observed the limits are UL0.99(0) ≈ 4.6 and UL0.95(0) ≈ 3.0.

The upper limit of the sought-for rate is

Aburst <
UL2(#)∑
< +

<
eff
)<

obs

. (10.8)

In the next subsection, we investigate the results of the DL-transient

search to determine the number of detected candidates # .

10.3.2 Search for PBH Bursts

In this section, we investigate the results for the full dataset. We show the

distribution of �2
Figure 10.8. The first three graphs show the results of

the single energy bin calibrations �2

single
(�). The graph on the right shows

the calibrated results of the combination of the three energy bins �2

e
.

For a dataset with pure background, the �2
distribution should follow a

"2
-distribution with one degree of freedom. The grey dashed line shows

this expected curve. The blue distribution presents the shuffled training

dataset. It follows the expected "2
-distribution. Having these distribution

matching confirms the validity of the calibration approach. However, the

slopes of all four �2
distributions for the unscrambled inference data are

smaller than for the training data. We expect the inference data also to

be dominated by background. Thus, except for outliers due to transient

sources, it should also follow a "2
-distribution. The difference indicates

a systematic difference between the two datasets created during the
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Figure 10.8: Distribution of �2
for all calibration stages. The three graphs on the left show the single energy bin calibration �2

single
(�). The

graph on the right presents the combination of these three energy bins, �2

e
. For a background dataset, this distribution should follow a

"2
-distribution with one degree of freedom. The grey dashed line shows this reference. The blue distribution shows the significance

distribution for the shuffled training data set, which matches the "2
-distribution. The results for the inference data are shown in orange.

We expect that the inference data is also dominated by background and, except for outliers, follows the "2
-distribution. However, the

slope is significantly lower, indicating that the significances are systematically too low.

2: Using a folded normal distribution

corresponds to the fact that our analysis

only assigns positive significance values.

shuffling approach. Having systematically lower significances � for the

inference means that the search is too conservative.

When comparing the three energy bins � ∈ {0, 1, 2}, the mismatch is

more evident in the high-energy bins. The main difference between these

energy bins is the total number of events, which decreases for higher

energies. This indicates that the uncertainty might be related to the

scrambling approach in sparsely populated data. While validating the

data preparation in section 10.1, we did not find a noticeable difference

between the training and prediction data. All auxiliary parameters are

identical and not modified during the training. The only minor difference

we could identify is that outliers with many counts are reduced during

the shuffling. However, as the objective of the shuffling is to remove

potential transient signals, this is the sought-for behavior. The level

of this effect can not explain a systematic difference on the scale we

observe here. Further, by reducing the counts, we would naively expect

smaller significances for the training data compared to the inference data.

However, Figure 10.8 shows that the results during the inference phase

have lower significances.

The results at the first three energy bins �2

single
(�) are directly given by

the differences between the predicted counts of �-like events by the

long-short-term memory and the input counts. The LSTM considers the

sequence of counts in the time series. Thus, a subtle difference between

the datasets’ temporal composition might influence the predictions. For

this thesis, we consider this as a source of systematic uncertainty. Future

work should investigate this difference further.

For this thesis, we proceed with the results that include this systematic

uncertainty. To estimate its effects on this analysis, we investigate the

results of the last stage of the calibration pipeline �4 . We show the

survival function of the significance distribution in Figure 10.9. The

orange curve represents the significance distribution of the inference

data. Assuming it is mostly background-dominated, it should follow the

SF of a folded normal distribution with � = 0 and � = 1.
2
We show the

expectation with the dashed grey line. Further, we fit the SF of a folded

normal distribution to the inference data and obtain values of � = 0.43

and � = 0.88. The dotted black curve shows this parametrization. The

difference in � affects mostly low significance values and thus is less

relevant for detecting transient sources. The distribution spread of < 1
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is due to the underestimated significance. This difference dominates at

high-significance values.
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Figure 10.9: Survival function of the sig-

nificance distribution. The orange curve

survival function of all significances ob-

tained in the inference dataset. We pa-

rameterize it with a folded normal dis-

tribution which is shown by the black

dotted curve. The expected distribution

is a folded normal distribution with

� = 0 and � = 1. The dashed grey line

shows this expectation. The blue arrows

indicate the positions of the quantiles

@ = 1/=
total

for both folded normal dis-

tributions. The difference of the signifi-

cances is Δ�4 ≈ 0.38.

In this thesis, we aim to detect transient signals. For this purpose, we

are particularly interested in the systematic uncertainty for the most

significant events. The total number of probed series is =total = 25712614.

Thus, the lowest value in the survival function is @ = 1/=total. We evaluate

the inverse survival function (ISF) for the parametrized end expected

distribution at ISF(@). For the fitted curve we find �fit ≈ 5.11 and the

expectation is �exp ≈ 5.50. We indicate these two values by the blue

arrows in Figure 10.9. The difference is Δ�4 ≈ 0.38. By using the smallest

possible quantile @, Δ�4 corresponds to the largest difference in the

significance. In the following, we use it as an estimate for the maximum

effect this uncertainty can have on the analysis results.

Before trial factor correction, we have two significant detections with

�4 > 5. The first occurs during VERITAS run 84091 with significance

�4 = 5.18. The second pre-trial detection is during run 88737 with

�4 = 5.05. After correcting for the systematic uncertainty Δ�4 , these two

signals correspond to 5.56� and 5.44�, respectively. As discussed in the

next paragraph, after correcting for trial factors in this blind search, these

detections are not relevant in terms of PBHs. Nonetheless, these events

might be interesting for further investigations.

We discussed the calculation of the global significance in section 9.3.3.

Starting from the total number of probed series, =total = 25712614, we

use Equation 9.18 to estimate the upper limit on the number of trial

factors =trial = 5142523. We use the inverse of Equation 9.19 to calculate

the ?pt-values post-trial factor correction.

?pt = 1 − (1 − ?4)=trial . (10.9)

Using ?pt in Equation 10.1 yields the global significance of the events.

The largest post-trial significance is at 0.41�. Including the correction

Δ�4 for the systematic uncertainty, its global significance is 1.52�. We

conclude, that after correcting for the trial factors, no evaporating PBH

was identified in the data set. The scientific interpretation of this results
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is independent of correcting for the systematically lower significances. In

the followingweuse# = 0 to constrain the local rate of PBHevaporations.

Using the observing time and effective search volumes, which we show

in Figure 10.6, the upper limit at the 99% confidence interval is

Aburst(99% CL) < 1.07 × 10
5

pc
−3

yr
−1. (10.10)

For comparison to existing limits, we also calculate the 95% confidence

upper limit, which yields

Aburst(95% CL) < 6.97 × 10
4

pc
−3

yr
−1. (10.11)

We show a comparison of this constraint with previously existing limits

in Figure 10.10.

Figure 10.10: Upper limits on the lo-

cal rate of PBH evaporation bursts. The

black and grey markers, respectively,

show peer and not peer reviewed pub-

lished limits. The results of HAWC [39],

CYGNUS [40], Fermi-LAT [42], Tibet air

shower array [43], H.E.S.S. [44], VERI-

TAS [45] show the upper limits at the

99% confidence interval. The limits from

Milagro [38] and Whipple [41] show the

95% confidence interval. The blue and

orange markers show the constraints we

derive with this analysis at both confi-

dence limits.
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The traditional approach of existing studies uses a fixed window with

duration Δ) to search for bursts of events. The distributions of the

number of counts within this time window are compared to a shuffled

background dataset. If PBH evaporations are present, it might cause

a detectable excess of counts in this distribution. Our analysis uses an

alternative approach in which we do not directly compare the number

of counts in a fixed window. For comparison, we illustrate our results

at Δ) = 100 s. This corresponds to the duration of the search window,

which is given by the number of decoder steps �dec = 5 and the duration

of the time bins )step = 20 s. However, a significant excess in one of the

decoder steps might also be sufficient to cause a detection. Thus, the

duration of the signals can be flexible.

10.4 Summary and Outlook

The results we present in subsection 10.3.2 are the first results for real

data obtained with this DL-based transient detection method. We have

defined many novel concepts for this approach which are tested by this
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first analysis. One strength of our analysis is the small number of required

assumptions. Due to the data-based nature, it does not depend on model-

ing the effective area and the radial acceptance. The characteristics of the

instrument response are directly learned from the data. Usually, generat-

ing effective areas and radial acceptances is computationally heavy and

requires careful validation. Removing the need for these makes changing

the cuts of the �/hadron separation light. Thus, these can be optimized

easily for the sought for science case.

In this thesis, we implemented an anomaly detection. Its goal is to detect

a transient signal as the divergence from the background. Thus, its appli-

cation is not limited to PBHs. Only a few hyperparameters of this search,

such as the length of the decoder �dec and the duration of the shuffling

window, are directly motivated for the specific science case of PBHs.

However, the transient search itself does not require assumptions about

the source’s temporal or spectral model. Thus, this DL based transient

detection methodmight also be used to search for other transient sources,

such as �-ray bursts or flaring blazars, in the future.

The limits we set on the rate of PBH evaporations are in the same order

of magnitude as existing limits for VERITAS and Milagro. Compared

to existing VERITAS limits, the dataset used in this analysis is consider-

ably larger. Previous work used 747 hours of observations. Our dataset

includes a total of 4222.36 hours. However, this work presents the first

application of this method and leaves room for future improvements

beyond the scope of this thesis.

The DL-based transient detection method provides an independent anal-

ysis method to search for PBH bursts. Contrary to the existing approach

to searching for the PBH bursts, we can assign an event-by-event sig-

nificance. It allows following up on individual events which might be

detected during the blind search. This might provide a deeper under-

standing of the nature of the transient signals. In the context of PBHs,

it might allow probing the theory of Hawking radiation for individual

bursts.

For future work, our analysis method has significant room for improve-

ment. In the following, we will discuss future points that might be

considered.

I First, the differences in the significance distributions we showed

in Figure 10.8 require further attention. In the current state, the

significance of the inference is systematically underestimated. As

discussed above, it hints at a subtle difference between the shuffled

training and inference data. For this thesis, we have validated

that the scientific interpretation is independent of this uncertainty.

However, in future work the source of systematic uncertainty

should be investigated more carefully. Solving the mismatch will

lead to a more accurate, higher significance during the inference.

I In the future, the hyper-parameters of this analysis might be

optimized. Among these is the number of decoder steps �dec. In

this thesis, we used a decoder with duration 100 s. The strongest

signal from PBH bursts has a duration of O(B). Thus, it might be

interesting also to test shorter decoder windows. Optimizing the

search window might improve the signal-to-noise ratio. It roughly

corresponds to varying Δ) during the traditional PBH searches.
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I A further improvement for future analyses might be more sophisti-

cated calibration stages. Currently, every ROI is treated indepen-

dently. However, signals from one PBH burst might be distributed

into multiple neighboring ROIs. We mentioned the possibility

of combining neighboring ROIs in subsection 9.3.3. In the blind

search, the source location can be anywhere in the FoV. There are

three probable cases of the location relative to the ROIs. If most of

the signal is in one ROI, using a group of the single ROI (6 = 1)

should be optimal. If the source is located between two ROIs, the

best results are expected by combining these two (6 = 2). Finally,

it might also be located between three ROIs in which 6 = 3 is

preferred. A priori, it is unclear which group 6 yields the best

performance. However, all three groups can be probed for every

individual ROI A using

TS6(A) = max

2∈26 (A)

(
− 1

6

∑
A′∈2

log
10
?e(A′)

)
. (10.12)

Here 26(A) is the set of combination which include ROI A and 6 − 1

of its not excluded neighbors. For 6 = 1, the group only consists

of A itself. The typical calibration approach can map these test

statistics to probabilities ?6(A). Eventually, the value which yields

the best results is chosen

TS1(A) = max

6∈{1,2,3}

(
− log

10
?6(A)

)
. (10.13)

By mapping this test statistic to ?1(A), we obtain a probability

that incorporates the three likely cases for the relative location

of the signals. It might significantly improve the sensitivity to

transients that are in the gap between ROIs. We especially expect an

improvement for signals which are currently not detectable when

split intomultiple ROIs. Thismight improve the detection efficiency

for faint PBH bursts close to 3max(�). Due to the 32
-term in the

integrand of Equation 10.3, improvements of 5< at large distances

3 have a particularly large influence to the effective volume +eff.

I In section 8.1, we define the regions of interest as circular regions.

With this configuration, not the entire FoV is covered by the ROIs.

Due to the oversampling approach introduced in section 8.5, �-like
events falling in gaps can also partly contribute to the event counts.

However, it might be beneficial to consider hexagonal ROIs instead.

These would fill the FoV without gaps. Thus, no �-like events are
lost in the first place.

I Figure 10.3 showes that the exclusion regions significantly affect

the detection efficiency for PBHs. For this thesis, we conservatively

choose the size of the exclusion regions. It might be possible to

improve the detection efficiency by selecting thesemore carefully in

the future. Especially not all detected sources need to be removed,

but only those with a significant excess on short time scales. Also,

the exclusion around stars might be optimized to leave a larger

fraction of the ROIs. For this consideration, the brightness of the �-
ray sources and stars is critical. The effects of reducing or removing

exclusion regions might be accounted for by additional auxiliary
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parameters, such as the distance to a source or star.

This thesis presents the first search for transient signals using this DL

based transient detection method on actual observation data. It defines

the critical concepts of how to conduct the search and implements the

entire data preparation pipeline for VERITAS. This allows for running

the different stages of the analysis and also testing possible improve-

ments efficiently. Thus, we anticipate faster development circles moving

forward.
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In section 2.3, we discussed the possibility of PBHs in the sublunar range

(10
17 . "/g . 10

23
) contributing a substantial fraction of the DM. At the

upper end, this window is constrained by microlensing studies. These

works search for events in which the BH passes the line of sight (LoS) to a

background star. During this process, the PBH acts as gravitational lens,

causing a temporal enhancement of the measurable signal. The optical

microlensing currently constrains over eleven orders of magnitude in the

BH mass. We show a simplified version of the PBH microlensing limits

by the blue regions in Figure 11.1. The MACHO and EROS experiments

both monitored stars in the Large Magellanic Cloud with roughly 24 h

cadence constraining the mass range of [10
−7 , 10]"� [158, 159]. The first

two years of Kepler data, monitoring Galactic stars with a sampling

speed of 30 min, probe PBH masses down to 10
−8 "� [160]. The Subaru

Hyper Suprime-Cam (HSC) constrains the abundance to 10
−11 "� with

observations of Andromeda with a cadence of 2 min [161]. The original

limits are shown by the dashed line. However, later work pointed out

that with an updated distribution of the star sizes, these results are only

valid to masses > 10
−10 "� [162]. The updated results are illustrated by

the solid blue line.
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Figure 11.1: Clipped overview of the

abundance of non-evaporation PBHs.Mi-

crolensing constraints are shown in blue.

[163]

At their lowmass range, above works are usually limited by the sampling

speed, reaching from 2 min to several hours. As discussed in section 3.2,

IACTs are optical telescopes optimized for ultra fast O(ns) signals in

the near-UV band. While the optical quality is modest compared to

traditional optical instruments, the fast sampling speed sets them apart

for fast optical astronomy. As proved in previous works [164, 165], they

provide excellent capabilities to monitor fast brightness changes of

astrophysical sources. In this chapter, we investigate the capabilities of

IACTs to constrain low mass PBH < 10
−10 "�. In section 11.1, we review

the critical formalism of optical microlensing. We study the possibilities

of IACTs constraining the currently sublunar mass range in section 11.2.
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11.1 Optical Microlensing

Optical microlensing occurs when a small massive object is passing

through close to the LoS between the observer and a background star.

In this process, the massive object, i.e. the PBH, acts as a gravitational

lens. In case of perfect alignment of star and lens, the Einstein ring can

be observed. Its size is described by the Einstein radius AE which is

the characteristic distance for gravitational lensing. It depends on the

relative distances between the lensing PBH and the background star to

the observer G = 3PBH/3∗ and the mass of the lens"PBH,

AE(G) =
√

4�

22

"PBH3∗G(1 − G). (11.1)

It is appropriate to measure distances in units of AE. Accordingly, the

projected star radius is given by

*∗ =
'G

AE(G)
, (11.2)

where ' is the radius of the star. The instantaneous distance of the PBH

to the LoS at time C is described by the impact parameter

D(C) =

√
D2

<8=
+

(
2(C − C0)
CE

)
2

(11.3)

where Dmin is the closest approach of the lens to the LoS at time C0, and

CE = 2AE/E) is the time for a lens to cross the Einstein ring with transverse

velocity E) .

The gravitational lensing creates multiple images of the same source.

Below we assume circular sources with a constant surface brightness.

Depending on the values of D relative to *∗, the shape of images is

either in a ring, two arcs or a slightly deformed ellipse. Example of the

first two cases are shown in the small graphs in Figure 11.2. The shape

of the lensed images are described by equation (3) of [166]. These are

shown by the blue shapes. The non-lensed images of the source with

radius*∗ = 0.1 are shown by the black shapes below. The shown images

correspond to the time of the closest approach Dmin for three different

values 0.02, 0.09, and 0.2. Due to the small extent of the lens, the shapes

are not individually resolvable. However, the observed solid angle of the

sources increases. This effect leads to an apparent amplification of the

source that is the quotient between the area of the blue lensed image and

the initial star size.

The amplification �FS for a finite source is described by equations (9)-(11)

of [166]. We show the light curves with the blue lines in Figure 11.2. As

comparison we also show the expected curves �PS for the point source

limit by the grey dashed lines. For small impact parameters, Dt � *∗, the
point source causes a larger amplification. At Dt ≈ *∗, the finite source
results are slightly larger. Finally, at Dt � *∗ the differences are only

marginal. The detectable duration of such events also depends on the

sensitivity �thresh of the instrument to detect an amplification. This value

directly yields the observable duration )obs at which � > �thresh. For the

examples, we show )obs by the dotted horizontal lines assuming that

an amplification by a factor 4 would be detectable for the given source
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by an arbitrary experiment. A higher sensitivity of the instrument also

increases the expected event duration.
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Figure 11.2:Apparent light curves during microlensing events with different minimum impact parameter Dmin. Blue shows the finite size

light curves for a source with*∗ = 0.1. The grey dashed curve shows the light curves for the assumption of a point source. The boxes in

the upper left of each graph show the lensed (blue) and initial (black) images of the target star at the point of closest approach Dmin.

As *∗ ∝ "−0.5
PBH

, the finite source effects are most critical for small PBH

masses. This study targets the currently unconstrained range "PBH <
10
−10"�. Thus, we only consider this more realistic finite source case.

In this case, the maximum reached amplification �max,FS with the lens

directly at the LoS (D = 0) depends on the projected star radius

�max,FS =
4 +*2

∗
*∗

. (11.4)

As the PBH is closer to the star, G → 1, the maximum amplification

decreases, �max,FS → 1. This yields a maximum distance Gmax at which

the instrument is just sensitive enough to detect this event. For heavy

PBHs, *∗ → 0 and thus Gmax ≈ 1. In this case, the microlensing event

would be detectable at any arbitrary position along the LoS. However,

for lighter PBHs the maximum value is proportional to the mass Gmax ∝
"PBH. The position of the transition between the constant and mass

dependent Gmax depends on the star parameters ', 3∗, and magnitude <

as well as the instrument’s sensitivity �thresh. For the best selected target

star and the sensitivity of VERITAS at a 50 Hz sampling, the transition is

around"PBH ≈ 10
−8 "�1. The optical depth for the finite source limit is

calculated by [167]

�FS ≈ �0

�
3

3∗'2G3

max

"PBH

, (11.5)

where �0 ≈ 7.9 × 10
−3"�/pc

3
is the local dark matter density. Here

we assume a constant DM density along the LoS. This is appropriate

as the relevant target stars for IACTs are close-by (3∗ < 1 kpc). The

corresponding total detectable event rate is

ΓFS ≈ 2

�FS E2

�Gmax'
, (11.6)

where E2 ≈ 220 km/s is the halo circular velocity. In case of large"PBH

with Gmax ≈ 1, we find ΓFS ∝ "−1

PBH
. This is due to the assumption of a

monochromatic mass function in which the total number of PBHs in the

DM halo depends on the mass =PBH ∝ "−1

PBH
. However, for small PBH
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masses Gmax ∝ "PBH and the detectable rate is ΓFS ∝ "PBH. The average

detectable duration of the microlensing events is

〈C4〉 =
�FS

ΓFS

. (11.7)

For small masses �FS ∝ "2

PBH
and thus 〈C4〉 ∝ "PBH. The average

duration of events decreases together with the mass. This proves, that

the sensitivity to fast optical transient events is critical for detecting

microlensing events with light PBHs.

11.2 Microlensing Observations with IACTs

Existing microlensing searches use traditional optical instruments. Con-

trary to IACTs, they provide a good optical precision which allows

monitoring a large number of stars simultaneously. For this, they use

CCD cameras with high pixel densities. The fastest sampling speed

among these studies was 2 min.

Contrary to these instruments, IACTs are particularly optimized to detect

the ∼ ns flashes of Cherenkov light produced in atmospheric air showers.

Their optical performance is discussed in more details in [168]. In addi-

tion to their optimized cameras, the most critical attribute are the large

optical reflectors. They help minimizing atmospheric scintillation noise.

However, the precision in measuring fluxes is at best modest compared to

the traditional instruments. Below we refer to VERITAS as representative

for the current generation of IACTs. At a sampling speed of 2400 Hz

VERITAS is sensitive to measure the flux of a ∼ 10.2 mag object with a

uncertainty of [165]

Δ�

�

(
2400 Hz, 10.2 mag

)
= 0.1. (11.8)

Each of the 499 pixels cover a patch of the sky with ∼ 0.16
◦
diameter.

Thus, they integrate a large amount of background light compared to the

much denser CCD cameras. Extragalactic targets, such as stars within as

the Large Magellanic Cloud or the Andromeda nebular, have a narrow

angular separation. Thus, the individual stars are not resolvable with

IACT cameras. Only bright galactic stars which are capable to outshine

the total background can be a possible targets. Below we conservatively

assume that only one bright foreground star could be detected at once

by an IACT.

11.2.1 Target Selection

As mentioned above, the stellar properties are crucial for describing the

expected microlensing events. They directly affect the optical depth and

thus the expected detectable event rate. We investigate the optimal target

stars for constraining the event rate for PBH masses below 10
−10 "� . For

this work, we only consider shot noise as a source of uncertainty. The shot

noise can bemodeled by a Poisson process. The relative uncertainty of flux

measurements decreases asΔ�/� ∝ #−0.5
, where# is the total number of

detected photons This number is composed by contributions of the source

#src and the night sky background #bck. We use the baseline sensitivity
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stated in Equation 11.8 to scale the relative uncertainty to arbitrary

magnitudes and sampling speeds. As discussed below, we use 50 Hz in

this work. Further, we assume a constant NSB level of magnitude < = 9.

The sensitivity to detect flux changes �thresh directly depends on the

relative uncertainty.We show the dependency of�thresh on themagnitude

of the star in Figure 11.3a. For this graph, we assume"PBH = 10
−10"�,

a star distance 3∗ = 50 pc, and a stellar radius ' = 10'�. The orange

graph only considers the shot noise by the source. In the blue curve, also

the NSB is considered. For very bright stars the value is roughly constant

�thresh ∼ 1. This threshold increases exponentially for fainter stars. The

calculation with the NSB leads to a larger slope. This reflects the fact that

the total amplification needs to be sufficient to overcome the additional

constant background. The transition happens around ∼ 13 mag.
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Figure 11.3: Required amplification and maximum distance as function of the magnitude of the star. For this graphs, we use values of

"PBH = 10
−10 "� , 3∗ = 50 pc, and ' = 10'� . The dashed grey vertical line illustrates the NSB level of 9 mag.

Using above result for �thresh, we calculate Gmax for the graph with the

NSB contribution. This result of this empirical function is shown in

Figure 11.3b. Below the transition point, we find Gmax ∝ 10
−0.2<

and

above Gmax ∝ 10
−0.8<

. These are shown by the black dashed and dotted

lines, respectively. We apply an interpolation 5 (<) describing the of Gmax

for the reference parameters mentioned above. It can be generalized to

arbitrary source values and PBH masses using

Gmax(<) ≈ 5 (<)
(
3∗

50 pc

) (
'

10'�

)−2
(
"PBH

10
−10 "�

)
. (11.9)

Inserting Equation 11.5 and Equation 11.9 into Equation 11.6 yields the

dependency of the event rate on the source and PBH parameters

ΓFS(<) ∝
33

∗ 5 (<)2
'3

"PBH. (11.10)

We define the ideal target star to maximize the expected detectable event

rate. It is a balance between the star parameters. A large source distance 3∗
corresponds to a large amount of DM along the LoS. A small star radius

and small magnitude are critical to obtain a large absolute amplification

during the microlensing. We investigate the objects of the JSDC catalog
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Figure 11.4: Distribution of star parameters relevant for microlensing. The larger markers and orange colors highlight target stars with a

high expected rate of microlensing events in the mass range"PBH < 10
−10"� . [163].
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[169] and query the SIMBAD database [170] to obtain the distances of

these objects. In total we have 433,378 candidates with all required

information. We show the distribution of the critical star parameters in

Figure 11.4. For each star, we estimate the relative expected event rate

using Equation 11.10. Stars with high expected rates are highlighted by

larger orange markers.

The majority of the best targets are B-type stars. Especially, hot subdwarf

stars (sdO/Bs) prove to be excellent targets. These are situated in the

extreme horizontal branch [171, 172]. Particularly, their very small radii

make them excellent targets for this microlensing study. The optimal

target is identified to be the sdO/B star PG 0240+046 with a Vmagnitude

of 11.98, distance 3∗ = 692 pc and radius ' = 0.174'�.
In this selection, we ignore the potential variability of stars. These are not

suited as targets for IACTs. Further, we also don’t consider the possible

saturation of pixels. It can limit the maximum brightness of stars that

can be monitored and thus exclude the stars with very low magnitudes.

However, the identified best target with a magnitude of 11.98 is well

observable with IACTs. We also note that only a small fraction of O-type

stars are included in the JSDC catalog. These stars also might be attractive

targets for microlensing due to their large ratio of brightness to radius.

11.2.2 Event rates

At their corresponding low mass end, existing contraints are typically

limited by the minimum detectable event duration. Thus, the calculation

of the expected event rate is performed by integrating the differential rate

3Γ/3C4 over the relevant range of event durations C4 . For examples of this

approach see [167, 173, 174]. The limiting factor for IACTs, however, is

not the sampling speed but the sensitivity to flux changes and the small

number of simultaneously monitored stars. These factors are directly

considered in the event rate given by Equation 11.6. Thus, this integration

is not required for this study.

To calculate the event rate, we assume a monochromatic mass profile of

the PBHs in the DM halo. Further, we assume that at any time during

the operations one star with attributes such as PG 0240+046 is observed.
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Figure 11.5: Left: Expected event rate for the optimal target PG 0240+046 as function of the PBH mass calculated using Equation 11.6. The

blue curve shows the expectation using the sensitivity of VERITAS. The dashed and dotted black lines correspond to projects to next

generation IACTs assuming 10 or 100 times smaller relative uncertainties, respectively. Right: Average duration of the detectable events

calculated using Equation 11.7 for VERITAS and next generation instruments.

Due to this optimistic assumption, the calculated event rates should be

considered as upper limits. This is sufficient for the feasibility study

we present in this thesis. For a more precise analysis, all monitored

stars during the observing schedule should be analysed and considered

accordingly. This addition is beyond the scope of this work.

The total number of detected photons # scale linearly with the sampling

duration CB . Accordingly, the relative error caused by shot noise decreases

with C−0.5
B . In principle, the sampling speed for optical observations can be

adjusted to the required science case. To reduce this relative uncertainty,

the sampling speed is selected as large as possible so that themicrolensing

events can still be detected. In this work, we assume 50 Hz. Compared

to the reference of 2, 400 Hz discussed above, it yields a ∼ 1/7 times

lower relative error. We identify a microlensing event by at least four

consecutive sample being enhanced by more than 3�. This corresponds
to less than one expected fake positive event per year of observing time.

It results in a sensitivity to events with C4 > 0.08 s.

The blue solid line in the left panel of Figure 11.5 presents the expected

event rate for VERITAS as a function of "PBH. The transition between

constant Gmax to the mass dependent regime is around 10
−8 "�. This

corresponds to the peak of the expected event rate. In the relevant range

of masses ≤ 10
−10 "� , the rate decreases linearly with"PBH. The reason

for this is the decreasing Gmax. On the right side we show the average

detectable event duration calculated with Equation 11.7. Again, the blue

curve shows the results expected for a study with VERITAS. The de-

tectable range of average event duration is highlighted by the green

area. It proves, that the fast sampling could allow a detection down to

∼ 10
−12 "� for VERITAS. In the mass range we aim to constrain, the

highest rate is obtained for 10
−10 "�. However, even at this mass, an

event is only expected every ∼ 10
6

years of observations.

Given the low expected event rate for VERITAS, we investigate the possi-

bilities for next generation instruments as well. The largest improvements

are expected due to larger reflecting areas and better quantum efficiencies

of the photodetectors. These directly improve the quantity �thresh−1 that

describes the detectable relative brightening of the star. We investigate

the results assuming changes by the future instrument by a factor of

1/10 and 1/100 compared to VERITAS. These two cases are illustrated by

the black dashed and dotted lines in Figure 11.5, respectively. We find
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microlensing’

that below the peak in detectable events the rate increase by a factor

(�thesh − 1)−2
. Further, the maximum is shifted to lower masses. The

event duration increases with (�thesh − 1)−1
in this range. Even with

the improved sensitivity by a factor 100, we only expect an event after

∼ 150 years of observations with the given sampling speed.

As mentioned above, the relative errors depend on the sampling dura-

tion CB and thus also the critical sensitivity changes (�thresh − 1) ∝ C−0.5
B .

At masses below the peak of detectable events, we find ΓFS ∝ CB and
〈C4〉 ∝

√
CB . Above this point, the event rate and duration are independent

of the changes. As the transition moves to lower masses, it allows tuning

the sampling speed to have the slowest possible sampling that still is

sufficient to detect these events. E.g., for the 100 times improved next

generation event, a 1 Hz sampling yields a peak around 10
−11 "� . At this

peak the expected event rate is ∼ 0.05 events per year and the average

duration is still well detectable.

We note that for a more detailed study also diffraction effects have to be

considered [175, 176]. These are relevant as the Schwarzschild radius of

the lensing PBH in this mass range is similar to the observed wavelength

'sch ≈ �. In contrast to the assumption above, this effect introduces a

time dependent oscillation of the apparent amplification. In this case,

the maximum reached brightening is decreased. Considering this effect

in the study above, would further decrease the total rate of detectable

events.

IACTs are also limited to observing during the night. Also a promising

target star is not within the FoV during all observations. Considering

these aspects, decreases the rate of detectable microlensing events further.

Even when ignoring the diffractive microlensing and other effects the

detectable PBH microlensing event rates are modest for the current and

next generation of IACTs. We conclude that the optical capabilities of

IACTs are not sufficient to constrain the PBH abundance in the sublunar

mass window using microlensing observations.



Conclusions and Outlook 12
Primordial black holes have been involved in explaining many cosmolog-

ical observations. Yet, to date their existence has neither been confirmed

nor entirely excluded. The largest unconstrained mass range is the sublu-

nar window which reaches from about 10
17

g to about 10
23

g. The mass

of PBHs below this window is small enough that the Hawking radiation

might be relevant. Those created at about 10
15

g would evaporate today.

PBHs with masses in the sublunar window and above are unaffected

by Hawking radiation. However, they might contribute to dark matter,

which comprises about 26% of the Universe’s critical density. This thesis

contributes to the ongoing search for these objects by developing new

methods to detect PBHs with VERITAS. In the first part, we aimed to

detect the burst of �-rays caused by evaporating PBHs. For this, we pre-

sented the implementation of a deep-learning-based transient detection

method.

We considered a data set of about 9 years of observations with VERITAS

between 2012 and 2021. Manually validating the quality of this data is

not feasible and would be a potential source of inconsistencies. Thus, we

developed a sophisticated automatic data quality assessment. It is based

on the VERITAS internal database. The data selection can be performed

without downloading and analyzing the data. This approach saves time

and unnecessary computational effort. Further, assessing the quality

based on low-level auxiliary parameters prevents possible selection bi-

ases on the high-level results. Besides simple filtering of the general

configurations and system status, it also performs a time-series analysis

of the L3-trigger rate and FIR temperature to identify temporary effects.

The three most common features in the data are short spikes or drops in

the rates, clouds in the FoV, and changes in the night sky brightness. They

can influence the instrument’s sensitivity and thus might not be suited

for scientific analysis. We developed algorithms that specifically aim to

identify these effects. They make it possible to mask these parts with

time-cuts rather than excluding the entire observing run. This method is

applicable beyond the scope of this thesis. This automatic selection of

data can create consistent datasets for scientific analyses. For this thesis,

we selected about 4222 hours of observations after time-cuts which are

probed for bursts by evaporating PBHs.

We implemented a new approach for VERITAS to probe this dataset. The

deep-learning-based transient detection method allows for conducting a

blind search. This thesis presented the first application of this method to

actual observational IACT data. It is data-driven, which reduces the need

for external modeling of the instrument response function. The method

can be split into two core elements. The first part is a long short-term

memory recurrent neural network with an encoder-decoder architecture.

It works with time series of �-like counts. These sequences represent

periods within the full dataset. The encoder is the background interval.

Based on this input, the LSTM predicts the expected background counts

of �-like events during the decoder time steps. A higher event count in

the observed data compared to the prediction indicates a transient signal.

In the second part, the results of the LSTM are used in a calibration
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pipeline to assign a statistical significance to possible transient signals.

The training of the LSTM and preparation of the calibration require

background datasets without transient signals. As this method has not

been used for a search with real IACT data before, this thesis first defined

the required strategies. Some of the key questions were:

I How can we create the required background datasets from the

observation data?

I To conduct a blind search, the decoder needs to cover the entire

probed period. However, the DL transient detectionmethod always

requires full time series of encoder plus decoder. How can we

probe the full dataset consistently?

I Which data features are critical to describing the instrument re-

sponse?

The newly developed data preparation pipeline reflects the answers to

these critical questions. Among the methods are approaches for shuffling

the data to remove transient signals, the definition of region of interests

and exclusion regions, preparing and padding time series, and a sliding

window approach. Further, we investigated which features describe the

changes in the data. We found that the secant of the zenith angle of

observation sec(�), the azimuthal angle of observation | |, the age of the
instrumentΔ)ref, the L3 trigger rate 'L3, themultiplicity of events", and

the offset angle � describe the effects on the rate of �-like events. These
are used as auxiliary parameters for the LSTM. Based on this study, we

also defined meta bins that correspond to the most significant systematic

changes in the �-like event rate. The calibration is done independently

for each of these meta bins. This technical work allows searching for

transient signals in the archival VERITAS data. In the implemented

anomaly detection, only the expected duration of the transient signals

is directly used. Thus, it might easily be adjusted for different transient

sources of VHE �-rays, such as �-ray bursts or blazar flares from objects

not yet detected in the TeV-range.

In this thesis, we probed the data for the O(s) signals from evaporating

PBHs.We conducted simulations of the signalswhichmight be detectable

with VERITAS. These cover the full range of observing conditions in

the dataset. The simulations are superimposed on a shuffled dataset

created from actual data. This avoids possible systematic uncertainties

in simulating the background. We used this dataset to determine the

detection efficiency for evaporating PBHs as a function of the observing

conditions, the PBH distance, and the position in the FoV. With this

efficiency, we calculate the effective search volume in which this analysis

can detect PBH bursts. Depending on the observing conditions, it is up

to +eff = 9.96 × 10
−5

pc
3
. This calculation takes into account the exact

setup used for the actual search.

With the estimate of the probed volume, we applied this method to

the full unshuffled dataset. After correcting for trial factors, no burst

caused by an evaporating PBH was detected. Thus, we used the total

observation time and +eff to constrain the local rate of PBH evaporations

to Aburst < 1.07 × 10
5

pc
−3

s
−1

at the 99% confidence interval. This limit is

in the range of existing constraints.

Future work can build on the implemented analysis and improve the

power of this new analysis technique. We discussed some of the critical

aspects which might be investigated. One point is a systematic uncer-
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tainty on the statistical significance. Currently, these are estimated too

conservatively. The most probable source is the shuffling of sparsely

populated data. In this thesis, we estimate the effect of this uncertainty.

The scientific results on the rate of PBH evaporations are not affected by

this uncertainty.

Further improvements might include additional calibration stages com-

bining signals from neighboring ROIs. This could improve the detection

of weak transient signals close to the border of an ROI. Also, the ROIs

could be optimized to use a hexagonal instead of a circular shape. It

would allow covering the entire FoV without gaps. This analysis also

showed that exclusion regions significantly impact the detection effi-

ciency of transient signals. For the scope of this thesis, we selected these

conservatively. Carefully revising these might allow us to include more

of the field of view in the search. Finally, the hyper-parameters of this

analysis might be further optimized for detecting PBHs. Notably, the

duration of the sensitive window, given by the decoder length, might be

adjusted. This might improve the signal-to-noise ratio.

The second part of this thesis investigates whether IACTs might constrain

PBH masses within the sublunar mass window. For this, we probed

optical microlensing as an alternative approach for IACTs. Sampling

speeds on the order of minutes to hours of traditional optical telescopes

are typically a constraining factor in extending PBH limits to lower

masses. IACTs can take optical observations with up to O(ns) sampling.

In this study, we used VERITAS as a representative of the current genera-

tion of IACTs. For this work, we reviewed microlensing and the optical

performance of IACTs and investigated which stars might be suitable

targets for this study. We found that a bright star with a small radius

at a large distance is preferred. Our investigation shows that the small

radii of hot subdwarf stars make them excellent targets. We used the

ideal target star PG 0240+046 to calculate the expected rate of PBH

microlensing events. For this, we determined an appropriate sampling

speed that IACTs might use. It needs to be fast enough to detect these

transient optical events. However, a slower sampling reduces the relative

uncertainties of the Poissonian noise. For VERITAS, as representative of

the current generation of IACTs, we find an expected rate of detectable

events of ∼ 10
−6

yr
−1

in the sublunar mass range with 50 Hz sampling

speed. We also investigated the changes for possible next-generation

instruments. Due to the higher sensitivity to optical transient, the optimal

sampling speed decreases to about 1 Hz. With this configuration, the

expected detectable rate is ∼ 0.05 yr
−1
. We conclude that the modest

precision of IACTs to measure optical fluxes is the most constraining as-

pect. Hardware advances increasing the optical flux sensitivity, however,

would improve the expected rate. Paired with the fast sampling speed, it

might also allow investigating the regime of diffractive microlensing for

light PBHs.
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Figure A.1: Run-wise background event rate in the second energy bin '1 (0.33 ≤ Erec/TeV < 1) in dependency of the reference time )
ref

.

Each point corresponds to an individual run. The colors denote the average L3 rate AL3 during each run. This plot only shows runs with

sec(�) < 1.05, pointing south, and in an extragalactic field. Each subgraph shows one of the nine seasons that are used in this work. For

each season, we calculate the correlation between the background rates '1 with AL3 and )
ref

using Spearman’s correlation coefficient.
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Figure A.2: Run-wise background event rate in the third energy bin '2 (1 ≤ Erec/TeV < 100) in dependency of the reference time )
ref
.

Each point corresponds to an individual run. The colors denote the average L3 rate AL3 during each run. This plot only shows runs with

sec(�) < 1.05, pointing south, and in an extragalactic field. Each subgraph shows one of the nine seasons that are used in this work. For

each season, we calculate the correlation between the background rates '1 with AL3 and )
ref

using Spearman’s correlation coefficient.
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